| simulate.bic.glm {Ecfun} | R Documentation |
A "simulate" method for a BMA::bic.glm
object
Description
Simulate predictions for newdata for a
model of class bic.glm.
NOTES: The stats package has a
simulate method for
"lm" objects which is used for
lm and glm
objects. This simulate.bic.glm
function differs from the
stats::simulate function
in the same two fundamental and important ways
as the simulate.glm function:
-
stats::simulatereturns simulated data consistent with the model fit assuming the estimated model parameters are true and exact, i.e., ignoring the uncertainty in parameter estimation. Thus, iffamily = poisson,stats::simulatereturns nonnegative integers.By contrast the
simulate.bic.glmfunction documented here returns optionally simulatedcoef (coefficients)plus simulated values for thelinkand / orresponsebut currently NOT pseudo-random numbers on the scale of the response. -
The
simulate.bic.glmfunction documented here also accepts an optionalnewdataargument, not accepted bystats::simulate. Thestats::simulatefunction only returns simulated values for the cases in the training set with no possibilities for use for different sets of conditions.
Usage
## S3 method for class 'bic.glm'
simulate(object, nsim = 1,
seed = NULL, newdata=NULL,
type = c("coef", "link", "response"), ...)
Arguments
object |
an object representing a fitted model
of class |
nsim |
number of response vectors to simulate. Defaults to 1. |
seed |
Argument passed as the first argument to
|
newdata |
optionally, a |
type |
the type of simulations required.
|
... |
further arguments passed to or from other methods. |
Details
1. Save current seed and optionally set
it using code copied from
stats:::simulate.lm.
2. postprob <- object[['postprob']];
x <- object[['x']]; y <- object[['y']];
mle <- object[['mle']];
linkinv <- object[['linkinv']].
3. cl <- as.list(object[['call']]);
wt <- cl[['wt']];
fam <- cl[['glm.family']]
4. if(is.null(newdata))newdata <- x
else ensure that all levels of factors of
newdata match x.
5. xMat <- model.matrix(~., x);
newMat <- model.matrix(~., newdata)
6. nComponents <- length(postprob);
nobs <- NROW(newdata)
7. sims <- matrix(NA, nobs, nsim)
8. rmdl <- sample(1:nComponents, nsims,
TRUE, postprob)
9. for(Comp in 1:nComponents)
nsimComp <- sum(rmdl==Comp);
refitComp <- glm.fit(xMat[, mle[Comp,]!=0], y,
wt, mle[Comp, mle[Comp,]!=0], family=fam);
simCoef <- mvtnorm::rmvnorm(nsimComp, coef
(refitComp), vcov(rfitComp));
sims[rmdl==Comp, ] <- tcrossprod(newMat[,
mle[Comp,]!=0], simCoef)
10. If length(type) == 1: return a
data.frame with one column for
each desired simulation, consistent with the
behavior of the generic simulate
applied to objects of class lm or
glm. Otherwise, return a list of
data.frames of the desired types.
Value
Returns either a data.frame or a
list of data.frames depending on
'type':
coef |
a |
link |
a |
response |
a |
if length(type)>1 |
a list with simulations on the desired scales. |
The value also has an attribute "seed".
If argument seed is NULL, the attribute
is the value of .Random.seed
before the simulation started. Otherwise it
is the value of the argument with a "kind"
attribute with value as.list(RNGkind()).
NOTE: This function currently may not work
with a model fit that involves a multivariate
link or response.
Author(s)
Spencer Graves
See Also
simulate
simulate.glm
bic.glm
predict.bic.glm
set.seed
rmvnorm
Examples
library(BMA)
library(mvtnorm)
##
## 1. a factor and a numeric
##
PoisReg2 <- data.frame(
x=factor(rep(0:2, 2)), x1=rep(1:2, e=3))
bicGLM2 <- bic.glm(PoisReg2, y=1:6, poisson)
newDat2 <- data.frame(
x=factor(rep(c(0, 2), 2), levels=0:2),
x1=3:6)
# NOTE: Force newDat2['x'] to have the same levels
# as PoisReg2['x']
bicGLMsim2n <- simulate(bicGLM2, nsim=5, seed=2,
newdata=newDat2[1:3,])
##
## 2. One variable: BMA returns
## a mixture of constant & linear models
##
PoisRegDat <- data.frame(x=1:2, y=c(5, 10))
bicGLMex <- bic.glm(PoisRegDat['x'],
PoisRegDat[, 'y'], poisson)
(postprob <- bicGLMex[['postprob']])
bicGLMex['mle']
# Simulate for the model data
bicGLMsim <- simulate(bicGLMex, nsim=2, seed=1)
# Simulate for new data
newDat <- data.frame(x=3:4,
row.names=paste0('f', 3:4))
bicGLMsin <- simulate(bicGLMex, nsim=3, seed=2,
newdata=newDat)
# Refit with bic.glm.matrix and confirm
# that simulate returns the same answers
bicGLMat <- bic.glm(as.matrix(PoisRegDat['x']),
PoisRegDat[, 'y'], poisson)
bicGLMatsim <- simulate(bicGLMat, nsim=3, seed=2,
newdata=newDat)
all.equal(bicGLMsin, bicGLMatsim)
# The same problem using bic.glm.formula
bicGLMfmla <- bic.glm(y ~ x, PoisRegDat, poisson)
bicGLMfmlsim <- simulate(bicGLMfmla, nsim=3, seed=2,
newdata=newDat)
all.equal(bicGLMsin, bicGLMfmlsim)
##
## 2a. Compute the correct answers manually
##
GLMex1 <- glm(y~x, poisson, PoisRegDat)
GLMex0 <- glm(y~1, poisson, PoisRegDat)
postProb <- bicGLMfmla$postprob
nComp <- length(postProb)
newMat <- model.matrix(~., newDat)
set.seed(2)
(rmdl <- sample(1:nComp, 3, TRUE,
postprob))
GLMsim. <- matrix(NA, 2, 3)
dimnames(GLMsim.) <- list(
rownames(newMat),
paste0('sim_', 1:3) )
sim1 <- mvtnorm::rmvnorm(2, coef(GLMex1),
vcov(GLMex1))
sim0 <- mvtnorm::rmvnorm(1, coef(GLMex0),
vcov(GLMex0))
GLMsim.[, rmdl==1] <- tcrossprod(newMat, sim1)
GLMsim.[, rmdl==2] <- tcrossprod(
newMat[, 1, drop=FALSE], sim0)
all.equal(bicGLMsin[[2]], data.frame(GLMsim.),
tolerance=4*sqrt(.Machine$double.eps))
# tcrossprod numeric precision is mediocre
# for the constant model in this example.