emxMixtureModel {EasyMx} | R Documentation |
Create a mixture model
Description
This function creates a mxiture model as an MxModel object.
Usage
emxMixtureModel(model, data, run=FALSE, p=NA, ...)
emxModelMixture(model, data, run=FALSE, p=NA, ...)
Arguments
model |
list. The MxModel objects that compose the mixture. |
data |
data used for the model |
run |
logical. Whether to run the model before returning. |
p |
character. Optional name of the mixing proportions matrix. |
... |
Further Mx Objects passed into the mixture model. |
Details
The model
argument is list of MxModel objects. These are the classes over which the mixture model operates.
The p
argument is optional. If not specified, the function will create and properly scale the mixing proportions for you. If specified, the Mx Object that gives the mixing proportions should be a column vector (one-column matrix).
Value
An MxModel.
See Also
Examples
# Factor Mixture Example
require(EasyMx)
data(myFADataRaw)
xmap1 <- list(F1=paste0('x', 1:6), F2=paste0('y', 1:3), F3=paste0('z', 1:3))
mod1 <- emxFactorModel(xmap1, data=myFADataRaw, name='m1')
xmap2 <- list(F1=c(paste0('x', 1:6), paste0('y', 1:3), paste0('z', 1:3)))
mod2 <- emxFactorModel(xmap2, data=myFADataRaw, name='m2')
mod <- emxMixtureModel(list(mod1, mod2), data=myFADataRaw)
# To estimate parameters either
# 1. mod <- mxRun(mod) or
# 2. include run=TRUE in the arguments above
summary(mod)
coef(mod)
# Latent Profile Example
require(EasyMx)
m1 <- omxSaturatedModel(demoOneFactor)[[1]]
m1 <- mxRename(m1, 'profile1')
m2 <- omxSaturatedModel(demoOneFactor)[[1]]
m2 <- mxRename(m2, 'profile2')
mod <- emxMixtureModel(list(m1, m2), data=demoOneFactor)
# To estimate parameters either
# 1. mod <- mxRun(mod) or
# 2. include run=TRUE in the arguments above
summary(mod)
coef(mod)
mxGetExpected(mod$profile1, 'covariance')
mxGetExpected(mod$profile1, 'means')
mxGetExpected(mod$profile2, 'covariance')
mxGetExpected(mod$profile2, 'means')
[Package EasyMx version 0.3-2 Index]