| DataTemporalMap-class {EHRtemporalVariability} | R Documentation |
Class DataTemporalMap
Description
Class DataTemporalMap object contains the statistical distributions of data estimated at a
specific time period. Both relative and absolute frequencies are included.
Details
Objects of this class are generated automatically by the estimateDataTemporalMap function,
but its construction and extension is open towards fostering its use through external methods.
E.g., one may use additional probability distribution estimation methods, or even construct
compatible DataTemporalMaps for other unstructured data such as images or free text.
Value
A DataTemporalMap object.
Slots
probabilityMapv-by-d numerical
matrixrepresenting the probability distribution temporal map (relative frequency).countsMapv-by-d numerical
matrixrepresenting the counts temporal map (absolute frequency).datesd-dimensional
Datearray of the temporal batches.supportv-by-1 numerical or character
matrixrepresenting the support (the value at each bin) of probabilityMap and countsMap.variableNamename of the variable (character).
variableTypetype of the variable (character) among "numeric", "character", "Date" and "factor".
periodbatching period among "week", "month" and "year".
Examples
# Generation through estimateDataTemporalMap function:
dataset <- read.csv2(system.file("extdata",
"nhdsSubset.csv",
package="EHRtemporalVariability"),
sep = ",",
header = TRUE,
na.strings = "",
colClasses = c( "character", "numeric", "factor",
"numeric" , rep( "factor", 22 ) ) )
datasetFormatted <- EHRtemporalVariability::formatDate(
input = dataset,
dateColumn = "date",
dateFormat = "%y/%m")
probMaps <- estimateDataTemporalMap(data = datasetFormatted,
dateColumnName = "date",
period = "month")
class( probMaps[[1]] )
# Manual generation:
countsMatrix <- matrix(sample.int(25, size = 12*10, replace = TRUE), nrow = 12, ncol = 10)
probabilityMatrix <- sweep(countsMatrix,1,rowSums(countsMatrix),"/")
dates <- seq(Sys.Date(),(Sys.Date()+30*11),30)
x <- new('DataTemporalMap', probabilityMap = probabilityMatrix,
countsMap = countsMatrix, dates = dates, support = data.frame(1:10),
variableName = "example", variableType = "numeric", period = "month")
plotDataTemporalMap(x)