vn.entropy {EGAnet} | R Documentation |
Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
Description
Computes the fit of a dimensionality structure using Von Neumman's entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data
Usage
vn.entropy(data, structure)
Arguments
data |
Matrix or data frame. Contains variables to be used in the analysis |
structure |
Numeric or character vector (length = |
Value
Returns a list containing:
VN.Entropy.Fit |
The Entropy Fit Index using Von Neumman's entropy |
Total.Correlation |
The total correlation of the dataset |
Average.Entropy |
The average entropy of the dataset |
Author(s)
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
References
Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
Examples
# Get EGA result
ega.wmt <- EGA(
data = wmt2[,7:24], model = "glasso",
plot.EGA = FALSE # no plot for CRAN checks
)
# Compute Von Neumman entropy
vn.entropy(ega.wmt$correlation, ega.wmt$wc)