tefi {EGAnet} | R Documentation |
Total Entropy Fit Index using Von Neumman's entropy (Quantum Information Theory) for correlation matrices
Description
Computes the fit (TEFI) of a dimensionality structure using Von Neumman's entropy when the input is a correlation matrix. Lower values suggest better fit of a structure to the data.
Usage
tefi(data, structure = NULL, verbose = TRUE)
Arguments
data |
Matrix, data frame, or |
structure |
Numeric or character vector (length = |
verbose |
Boolean (length = 1).
Whether messages and (insignificant) warnings should be output.
Defaults to |
Value
Returns a data frame with columns:
Non-hierarchical Structure
VN.Entropy.Fit |
The Total Entropy Fit Index using Von Neumman's entropy |
Total.Correlation |
The total correlation of the dataset |
Average.Entropy |
The average entropy of the dataset |
Hierarchical Structure
VN.Entropy.Fit |
The Generalized Total Entropy Fit Index using Von Neumman's entropy |
Lower.Order.VN |
Lower order (only) Total Entropy Fit Index |
Higher.Order.VN |
Higher order (only) Total Entropy Fit Index |
Author(s)
Hudson Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, and Robert Moulder <rgm4fd@virginia.edu>
References
Initial formalization and simulation
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
Examples
# Load data
wmt <- wmt2[,7:24]
# Estimate EGA model
ega.wmt <- EGA(
data = wmt, model = "glasso",
plot.EGA = FALSE # no plot for CRAN checks
)
# Compute entropy indices for empirical EGA
tefi(ega.wmt)
# User-defined structure (with `EGA` object)
tefi(ega.wmt, structure = c(rep(1, 5), rep(2, 5), rep(3, 8)))