simDFM {EGAnet} | R Documentation |
Simulate data following a Dynamic Factor Model
Description
Function to simulate data following a dynamic factor model (DFM). Two DFMs are currently available: the direct autoregressive factor score model (Engle & Watson, 1981; Nesselroade, McArdle, Aggen, and Meyers, 2002) and the dynamic factor model with random walk factor scores.
Usage
simDFM(
variab,
timep,
nfact,
error,
dfm = c("DAFS", "RandomWalk"),
loadings,
autoreg,
crossreg,
var.shock,
cov.shock,
burnin = 1000,
variation = FALSE
)
Arguments
variab |
Number of variables per factor. |
timep |
Number of time points. |
nfact |
Number of factors. |
error |
Value to be used to construct a diagonal matrix Q. This matrix is p x p covariance matrix Q that will generate random errors following a multivariate normal distribution with mean zeros. The value provided is squared before constructing Q. |
dfm |
A string indicating the dynamical factor model to use. Current options are:
|
loadings |
Magnitude of the loadings. |
autoreg |
Magnitude of the autoregression coefficients. |
crossreg |
Magnitude of the cross-regression coefficients. |
var.shock |
Magnitude of the random shock variance. |
cov.shock |
Magnitude of the random shock covariance |
burnin |
Number of n first samples to discard when computing the factor scores. Defaults to 1000. |
variation |
Boolean.
Whether parameters should be varied.
Defaults to |
Author(s)
Hudson F. Golino <hfg9s at virginia.edu>
References
Engle, R., & Watson, M. (1981). A one-factor multivariate time series model of metropolitan wage rates. Journal of the American Statistical Association, 76(376), 774-781.
Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Multivariate applications book series. Modeling intraindividual variability with repeated measures data: Methods and applications, 235-265.
Examples
## Not run:
# Estimate EGA network
data1 <- simDFM(variab = 5, timep = 50, nfact = 3, error = 0.05,
dfm = "DAFS", loadings = 0.7, autoreg = 0.8,
crossreg = 0.1, var.shock = 0.36,
cov.shock = 0.18, burnin = 1000)
## End(Not run)