| entropyFit {EGAnet} | R Documentation | 
Entropy Fit Index
Description
Computes the fit of a dimensionality structure using empirical entropy. Lower values suggest better fit of a structure to the data.
Usage
entropyFit(data, structure)
Arguments
| data | Matrix or data frame. Contains variables to be used in the analysis | 
| structure | Numeric or character vector (length =  | 
Value
Returns a list containing:
| Total.Correlation | The total correlation of the dataset | 
| Total.Correlation.MM | Miller-Madow correction for the total correlation of the dataset | 
| Entropy.Fit | The Entropy Fit Index | 
| Entropy.Fit.MM | Miller-Madow correction for the Entropy Fit Index | 
| Average.Entropy | The average entropy of the dataset | 
Author(s)
Hudson F. Golino <hfg9s at virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com> and Robert Moulder <rgm4fd@virginia.edu>
References
Initial formalization and simulation 
Golino, H., Moulder, R. G., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Nesselroade, J., Sadana, R., Thiyagarajan, J. A., & Boker, S. M. (2020).
Entropy fit indices: New fit measures for assessing the structure and dimensionality of multiple latent variables.
Multivariate Behavioral Research.
Examples
# Load data
wmt <- wmt2[,7:24]
## Not run: 
# Estimate EGA model
ega.wmt <- EGA(data = wmt)
## End(Not run)
# Compute entropy indices
entropyFit(data = wmt, structure = ega.wmt$wc)