gof.bootstrap {EDFtest} | R Documentation |
Generic GOF tests based on EDF using bootstrap
Description
This function takes in an i.i.d. random sample, use MLE to estimate parameters of the assumed distribution, compute probability integral transforms, and computes Cramér-von Mises, Anderson-Darling and Watson statistics and their P-values using bootstrap method.
Usage
gof.uniform.bootstrap(x, M = 10000)
gof.normal.bootstrap(x, M = 10000)
gof.gamma.bootstrap(x, M = 10000)
gof.logistic.bootstrap(x, M = 10000)
gof.laplace.bootstrap(x, M = 10000)
gof.weibull.bootstrap(x, M = 10000)
gof.extremevalue.bootstrap(x, M = 10000)
gof.exp.bootstrap(x, M = 10000)
Arguments
x |
A random sample. |
M |
Number of bootstrap, 10000 by default. |
Value
Cramér-von Mises, Anderson-Darling and Watson statistics and their P-values.
See Also
gof.sandwich
for general distributions using Sandwich estimation
of covariance function;
gof
for generic functions using imhof
function.
Examples
x0=runif(n=100,min=-1,max=1)
gof.uniform.bootstrap(x0,M=100)
x1=rnorm(n=100,mean=0,sd=1)
gof.normal.bootstrap(x1,M=100)
x2=rgamma(n=100,shape=1,scale=1)
gof.gamma.bootstrap(x2,M=100)
x3=rlogis(n=100,location=0,scale=1)
gof.logistic.bootstrap(x3,M=100)
x4= rmutil::rlaplace(n=100,m=0,s=1)
gof.laplace.bootstrap(x4,M=100)
x5=rweibull(n=100,shape=1,scale=1)
gof.weibull.bootstrap(x5,M=100)
x5_log=log(x5)
gof.extremevalue.bootstrap(x5_log,M=100)
x6=rexp(n=100,rate=1/2)
gof.exp.bootstrap(x6,M=100)
[Package EDFtest version 0.1.0 Index]