projectVoc {DistatisR} | R Documentation |
Compute barycentric projections for count-like
description of the items of a distatis
-type
of analysis.
Description
projectVoc
Compute barycentric projection for count-like
description of the items of a distatis
-type of analysis.
The data need to be non-negative and typically represent
the vocabulary (i.e., words) used to describe the items
in a sorting/ranking/projective-mapping task.
Usage
projectVoc(CT.voc, Fi, namesOfFactors = NULL)
Arguments
CT.voc |
a matrix or data.frame
storing a
|
Fi |
a matrix or data.frame
storing the
|
namesOfFactors |
(Default: NULL), if |
Details
two types of projection are computed: 1) a plain barycentric (words are positioned at the barycenter–a.k.a. center of mass–of the items it describes) and 2) a correspondence analysis barycentric where the variance of the projected words is equal to the variance of the items (as for correspondence analysis when using the "symmetric" representation).
Value
a list with
1) Fvoca.bary
: the barycentric projections of
the words,
and 2) Fvoca.normed
: the CA normalized
(i.e., variance of projections equals eigenvalue)
barycentric projections of
the words.
Author(s)
Herve Abdi
Source
Abdi, H, & Valentin, D. (2007). Papers available from https://personal.utdallas.edu/~herve/
References
Abdi, H., & Valentin, D., (2007). Some new and easy ways to describe, compare, and evaluate products and assessors. In D., Valentin, D.Z. Nguyen, L. Pelletier (Eds) New trends in sensory evaluation of food and non-food products. Ho Chi Minh (Vietnam): Vietnam National University & Ho Chi Minh City Publishing House. pp. 5-18.
and
Lahne, J., Abdi, H., & Heymann, H. (2018). Rapid sensory profiles with DISTATIS and barycentric text projection: An example with amari, bitter herbal liqueurs. Food Quality and Preference, 66, 36-43.
Examples
# use the data from the BeersProjectiveMapping dataset
data("BeersProjectiveMapping")
# Create the I*J*K brick of data
zeBrickOfData <- projMap2Cube(
BeersProjectiveMapping$ProjectiveMapping,
shape = 'flat', nVars = 2)
# create the cube of covariance matrices between beers
cubeOfCov <- createCubeOfCovDis(zeBrickOfData$cubeOfData)
# Call distatis
testDistatis <- distatis(cubeOfCov$cubeOfCovariance, Distance = FALSE)
# Project the vocabulary onto the factor space
F4Voc <- projectVoc(BeersProjectiveMapping$CT.vocabulary,
testDistatis$res4Splus$F)