Chi2DistanceFromSort {DistatisR} | R Documentation |
Chi2DistanceFromSort
:
Creates a 3-dimensional \chi^2
distance array from the results
of a sorting task.
Description
Chi2DistanceFromSort
:
Takes the results from a (plain) sorting task where
K
assessors sort
I
observations into (mutually exclusive) groups
(i.e., one object is
in one an only one group).
Chi2DistanceFromSort
creates an
I \times
I \times K
array of distance in which
each of the k
"slices"
stores the (sorting) distance matrix of the
k
th assessor.
In one of
these distance matrices,
the distance between rows is the \chi^2
distance between rows when the results
of the task are coded as 0/1 group
coding (i.e., the "complete disjunctive coding"
as used in multiple
correspondence analysis,
see Abdi & Valentin, 2007, for more)
Usage
Chi2DistanceFromSort(X)
Arguments
X |
gives the results of a sorting task (see example below) as a objects (row) by assessors (columns) matrix. |
Details
The ouput ot the function Chi2DistanceFromSort
is used as input for the
function distatis
.
The input should have assessors as columns and observations as rows (see example below)
Value
Chi2DistanceFromSort
returns an
I\times I \times K
array of K
distances matrices
(between the I
observations)
Author(s)
Herve Abdi
References
See examples in
Abdi, H., Valentin, D., Chollet, S., & Chrea, C. (2007). Analyzing assessors and products in sorting tasks: DISTATIS, theory and applications. Food Quality and Preference, 18, 627–640.
Abdi, H., & Valentin, D., (2007). Some new and easy ways to describe, compare, and evaluate products and assessors. In D., Valentin, D.Z. Nguyen, L. Pelletier (Eds) New trends in sensory evaluation of food and non-food products. Ho Chi Minh (Vietnam): Vietnam National University-Ho chi Minh City Publishing House. pp. 5–18.
Abdi, H., & Valentin, D. (2007). Multiple correspondence analysis. In N.J. Salkind (Ed.): Encyclopedia of Measurement and Statistics. Thousand Oaks (CA): Sage. pp. 651-657.
These papers are available from https://personal.utdallas.edu/~herve/
See Also
Examples
# 1. Get the data from the 2007 sorting example
# this is the eay they look from Table 1 of
# Abdi et al. (2007).
# Assessors
# 1 2 3 4 5 6 7 8 9 10
# Beer Sex f m f f m m m m f m
# -----------------------------
#Affligen 1 4 3 4 1 1 2 2 1 3
#Budweiser 4 5 2 5 2 3 1 1 4 3
#Buckler_Blonde 3 1 2 3 2 4 3 1 1 2
#Killian 4 2 3 3 1 1 1 2 1 4
#St. Landelin 1 5 3 5 2 1 1 2 1 3
#Buckler_Highland 2 3 1 1 3 5 4 4 3 1
#Fruit Defendu 1 4 3 4 1 1 2 2 2 4
#EKU28 5 2 4 2 4 2 5 3 4 5
#
# 1.1. Create the
# Name of the Beers
BeerName <- c('Affligen', 'Budweiser','Buckler Blonde',
'Killian','St.Landelin','Buckler Highland',
'Fruit Defendu','EKU28')
# 1.2. Create the name of the Assessors
# (F are females, M are males)
Juges <- c('F1','M2', 'F3', 'F4', 'M5', 'M6', 'M7', 'M8', 'F9', 'M10')
# 1.3. Get the sorting data
SortData <- c(1, 4, 3, 4, 1, 1, 2, 2, 1, 3,
4, 5, 2, 5, 2, 3, 1, 1, 4, 3,
3, 1, 2, 3, 2, 4, 3, 1, 1, 2,
4, 2, 3, 3, 1, 1, 1, 2, 1, 4,
1, 5, 3, 5, 2, 1, 1, 2, 1, 3,
2, 3, 1, 1, 3, 5, 4, 4, 3, 1,
1, 4, 3, 4, 1, 1, 2, 2, 2, 4,
5, 2, 4, 2, 4, 2, 5, 3, 4, 5)
# 1.4 Create a data frame
Sort <- matrix(SortData,ncol = 10, byrow= TRUE, dimnames = list(BeerName, Juges))
#
#-----------------------------------------------------------------------------
# 2. Create the set of distance matrices (one distance matrix per assessor)
# (use the function DistanceFromSort)
DistanceCube <- Chi2DistanceFromSort(Sort)
#-----------------------------------------------------------------------------
# 3. Call the DISTATIS routine with the cube of distance
# obtained from DistanceFromSort as a parameter for the distatis function
testDistatis <- distatis(DistanceCube)