Discrete Inverse Weibull {DiscreteInverseWeibull} | R Documentation |
The discrete inverse Weibull distribution
Description
Probability mass function, distribution function, quantile function and random generation for the discrete inverse Weibull distribution with parameters q
and \beta
Usage
ddiweibull(x, q, beta)
pdiweibull(x, q, beta)
qdiweibull(p, q, beta)
rdiweibull(n, q, beta)
Arguments
x |
a vector of quantiles |
p |
a vector of probabilities |
q |
the value of the first parameter, |
beta |
the value of the second parameter, |
n |
the sample size |
Details
The discrete inverse Weibull distribution has probability mass function given by P(X=x;q,\beta)=q^{(x)^{-\beta}}-q^{(x-1)^{\beta}}
, x=1,2,3,\ldots
, 0<q<1, \beta>0
. Its cumulative distribution function is F(x; q, \beta)=q^{x^{-\beta}}
Value
ddiweibull
gives the probability, pdiweibull
gives the distribution function, qdiweibull
gives the quantile function, and rdiweibull
generates random values. See the reference below for the continuous inverse Weibull distribution.
References
Dutang, C., Goulet, V., Pigeon, M. (2008) actuar: An R package for actuarial science, Journal of Statistical Software 25(7): 1-37
Examples
# Ex.1
x<-1:10
q<-0.6
beta<-0.8
ddiweibull(x, q, beta)
t<-qdiweibull(0.99, q, beta)
t
pdiweibull(t, q, beta)
# Ex.2
q<-0.4
beta<-1.7
n<-100
x<-rdiweibull(n, q, beta)
tabulate(x)/sum(tabulate(x))
y<-1:round(max(x))
# compare with
ddiweibull(y, q, beta)