asymmetryCurve {DepthProc} | R Documentation |
Asymmetry curve based on depths
Description
Produces an asymmetry curve estimated from given data.
Usage
asymmetryCurve(
x,
y = NULL,
alpha = seq(0, 1, 0.01),
movingmedian = FALSE,
name = "X",
name_y = "Y",
depth_params = list(method = "Projection")
)
Arguments
x |
The data as a matrix or data frame. If it is a matrix or data frame, then each row is viewed as one multivariate observation. |
y |
Additional matrix of multivariate data. |
alpha |
An ordered vector containing indices of central regins used for asymmetry curve calculation. |
movingmedian |
Logical. For default FALSE only one depth median is used to compute asymmetry norm. If TRUE — for every central area, a new depth median will be used — this approach needs much more time. |
name |
Name of set X — used in plot legend |
name_y |
Name of set Y — used in plot legend |
depth_params |
list of parameters for function depth (method, threads, ndir, la, lb, pdim, mean, cov, exact). |
method |
Character string which determines the depth function used. The method can be "Projection" (the default), "Mahalanobis", "Euclidean", "Tukey" or "LP". For details see |
Details
For sample depth function D({x}, {{{Z}} ^ {n}})
, {x} \in {{{R}} ^ {d}}
, d \ge 2
, {Z} ^ {n} = \{{{{z}}_{1}}, ..., {{{z}}_{n}}\} \subset {{{R}} ^ {d}}
, {{D}_{\alpha}}({{{Z}} ^ {n}})
denoting \alpha
— central region, we can define the asymmetry curve AC(\alpha) = \left(\alpha, \left\| {{c} ^ {-1}}(\{{\bar{z}} - med|{{D}_{\alpha}}({{{Z}} ^ {n}})\}) \right\|\right) \subset {{{R}} ^ {2}}
, for \alpha \in [0, 1]
being nonparametric scale and asymmetry functional correspondingly, where c
— denotes constant, {\bar{z}}
— denotes mean vector, denotes multivariate median induced by depth function and vol
— denotes a volume.
Asymmetry curve takes uses function convhulln from package geometry for computing a volume of convex hull containing central region.
Author(s)
Daniel Kosiorowski, Mateusz Bocian, Anna Wegrzynkiewicz and Zygmunt Zawadzki from Cracow University of Economics.
References
Serfling R. J. Multivariate Symmetry and Asymmetry, Encyclopedia of Statistical Science, S Kotz, C.B. Read, N. Balakrishnan, B. Vidakovic (eds), 2nd, ed., John Wiley.
Liu, R.Y., Parelius, J.M. and Singh, K. (1999), Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion), Ann. Statist., 27, 783–858.
Chaudhuri, P. (1996), On a Geometric Notion of Quantiles for Multivariate Data, Journal of the American Statistical Association, 862–872.
Dyckerhoff, R. (2004), Data Depths Satisfying the Projection Property, Allgemeines Statistisches Archiv., 88, 163–190.
See Also
Examples
# EXAMPLE 1
library(sn)
xi <- c(0, 0)
alpha <- c(2, -5)
Omega <- diag(2) * 5
n <- 500
X <- mvrnorm(n, xi, Omega) # normal distribution
Y <- rmst(n, xi, Omega, alpha, nu = 1)
asymmetryCurve(X, Y, name = "NORM", name_y = "S_T(2, -5, 10)")
# EXAMPLE 2
data(under5.mort)
data(inf.mort)
data(maesles.imm)
data1990 <- cbind(under5.mort[, 1], inf.mort[, 1], maesles.imm[, 1])
data2011 <- cbind(under5.mort[, 22], inf.mort[, 22], maesles.imm[, 22])
as1990 <- asymmetryCurve(data1990, name = "scale curve 1990")
as2011 <- asymmetryCurve(data2011, name = "scale curve 2011")
figure <- getPlot(combineDepthCurves(as1990, as2011)) +
ggtitle("Scale curves")
figure