cswi.aSE {DendroSync}R Documentation

Within-group synchrony for homoscedastic compound symmetry model

Description

The function calculates the within-group synchrony (a^) and standard error (SE) for homoscedastic compound symmetry models (mCS).

Usage

cswi.aSE(model)

Arguments

model

a class "lme" compound symmetry model (mCS) produced by dendro.varcov with homoscedastic equals TRUE.

Details

The function calculates within-group synchrony for homoscedastic compound symmetry model (mCS).

Value

The function returns a matrix containing within-group synchrony and SE for each combinations of varGroup levels. This function is used internally in sync.

Author(s)

Josu G. Alday, Tatiana A. Shestakova, Victor Resco de Dios, Jordi Voltas

References

Shestakova, T.A., Aguilera, M., Ferrio, J.P., Gutierrez, E. & Voltas, J. (2014). Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios. Tree Physiology 34: 819-838.

Shestakova, T.A., Gutierrez, E., Kirdyanov, A.V., Camarero, J.J., Genova, M., Knorre, A.A., Linares, J.C., Resco de Dios, V., Sanchez-Salguero, R. & Voltas, J. (2016). Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proceedings of the National Academy of Sciences of the United States of America 113: 662-667.

See Also

sync for a clear description of synchrony evaluation.

Examples

## Calculate within-group homoscedastic synchrony and SE
 # for compound symmetry homocedastic model of conifersIP data:
 data(conifersIP)
 
 #Fit the homoscedastic set of varcov models (mBE, mNE, mCS, mUN)
 # using taxonomic grouping criteria (ie. Species)
 ModHm <- dendro.varcov(TRW ~ Code, varTime = "Year", varGroup = "Species", 
                        data = conifersIP, homoscedastic = TRUE)
 summary(ModHm)
   
 #Obtain the compound symmetry model within-group synchrony and SE
 # for each varGroup stratum.
 cswi.aSE(ModHm$mCS)#compound symmetry
   

[Package DendroSync version 0.1.4 Index]