plot_prcomp {DataExplorer} | R Documentation |
Visualize principal component analysis
Description
Visualize output of prcomp.
Usage
plot_prcomp(
data,
variance_cap = 0.8,
maxcat = 50L,
prcomp_args = list(scale. = TRUE),
geom_label_args = list(),
title = NULL,
ggtheme = theme_gray(),
theme_config = list(),
nrow = 3L,
ncol = 3L,
parallel = FALSE
)
Arguments
data |
input data |
variance_cap |
maximum cumulative explained variance allowed for all principal components. Default is 80%. |
maxcat |
maximum categories allowed for each discrete feature. The default is 50. |
prcomp_args |
a list of other arguments to prcomp |
geom_label_args |
a list of other arguments to geom_label |
title |
plot title starting from page 2. |
ggtheme |
complete ggplot2 themes. The default is theme_gray. |
theme_config |
a list of configurations to be passed to theme. |
nrow |
number of rows per page |
ncol |
number of columns per page |
parallel |
enable parallel? Default is |
Details
When cumulative explained variance exceeds variance_cap
, remaining principal components will be ignored. Set variance_cap
to 1 for all principal components.
Discrete features containing more categories than maxcat
specifies will be ignored.
Value
invisibly return the named list of ggplot objects
Note
Discrete features will be dummify-ed first before passing to prcomp.
Missing values may create issues in prcomp. Consider na.omit your input data first.
Features with zero variance are dropped.
Examples
plot_prcomp(na.omit(airquality), nrow = 2L, ncol = 2L)