| selectModel {DR.SC} | R Documentation | 
Select the number of clusters
Description
Select the number of clusters by specified criteria.
Usage
  
  selectModel(obj, criteria = 'MBIC', pen.const=1)
  ## S3 method for class 'drscObject'
selectModel(obj, criteria = 'MBIC', pen.const=1)
  ## S3 method for class 'Seurat'
selectModel(obj, criteria = 'MBIC', pen.const=1)
  
  
Arguments
S
obj | 
 an object with class   | 
criteria | 
 a string, specify the criteria used for selecting the number of clusters, supporting "MBIC", "BIC" and "AIC".  | 
pen.const | 
 an optional positive value, the adjusted constant used in the MBIC criteria. It usually takes value between 0.1 to 1.  | 
Value
For S3 method of Seurat, it return a  revised "Seurat" object with updated Idents(seu), spatial.drsc.cluster in the metadata and DimReduc object named dr-sc in the slot reductions. For S3 method of drscObject, it returns a list with the following components:
bestK | 
 the selected number of clusters.  | 
cluster | 
 inferred class labels  | 
hZ | 
 extracted latent features.  | 
icMat | 
 a numeric matrix including the criteria value for each number of clusters K.  | 
Note
nothing
Author(s)
Wei Liu
References
See Also
Examples
seu <- gendata_RNAExp(height=10, width=10,p=50, K=4)
library(Seurat)
seu <- NormalizeData(seu, verbose=FALSE)
# or choose 40 spatailly variable features using FindSVGs in DR.SC
seu <- FindSVGs(seu, nfeatures = 40, verbose=FALSE)
# users define the adjacency matrix
Adj_sp <- getAdj(seu, platform = 'ST')
dat <- GetAssayData(seu, assay = "RNA", slot='data')
X <- Matrix::t(dat)
# maxIter = 2 is only used for illustration, and user can use default.
drscList <- DR.SC_fit(X,Adj_sp=Adj_sp ,K=4, maxIter=2, verbose=TRUE)
drsc1 <- selectModel(drscList)
str(drsc1)