RunWPCA {DR.SC} | R Documentation |
Run Weighted Principal Component Analysis
Description
Run a weighted PCA dimensionality reduction
Usage
RunWPCA(object, q=15)
### S3 method for class "Seurat"
## RunWPCA(object, q=15)
### S3 method for class "matrix"
## RunWPCA(object, q=15)
### S3 method for class "dgCMatrix"
## RunWPCA(object, q=15)
Arguments
object |
an object named "Seurat", "maxtrix" or "dgCMatrix". The object of class "Seurat" must include slot "scale.data". |
q |
an optional positive integer, specify the number of features to be extracted. |
Details
Nothing
Value
For Seurat object, return a Seurat object. For objcet "matrix" and "dgCMatrix", return a object "matrix" with rownames same as the colnames of X
, and colnames "WPCA1" to "WPCAq".
Note
nothing
Author(s)
Wei Liu
References
Bai, J. and Liao, Y. (2017). Inferences in panel data with interactive effects using large covariance matrices. Journal of Econometrics, 200(1):59–78.
See Also
None
Examples
## Not run:
library(Seurat)
seu <- gendata_RNAExp(height=20, width=20,p=100, K=4)
## log-normalization
seu <- NormalizeData(seu)
##
seu <- FindVariableFeatures(seu, nfeatures=80)
## Scale
seu <- ScaleData(seu)
## Run WPCA
seu <- RunWPCA(seu)
seu
## Run tSNE based on wpca
seu <- RunTSNE(seu, reduction='wpca')
seu
## Find SVGs
seu <- FindSVGs(seu, nfeatures=80)
(genes <- topSVGs(seu, ntop=10))
Idents(seu) <- factor(paste0("cluster", seu$true_clusters), levels=paste0("cluster",1:4))
RidgePlot(seu, features = genes[1:2], ncol = 2)
FeaturePlot(seu, features = genes[1:2], reduction = 'tsne' ,ncol=2)
## End(Not run)
[Package DR.SC version 3.4 Index]