nudge.plot.qq {DIME} | R Documentation |
QQ-plot of GNG model vs. observed data
Description
Produces a QQ-plot for visual inspection of quality of fit with regards to
the uniform Gaussian (NUDGE) mixture model estimated using the function
nudge.fit
Usage
nudge.plot.qq(data, obj, resolution = 10, xlab = NULL, ylab = NULL,
main = NULL, pch = NULL, ...)
Arguments
data |
an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze. |
obj |
a list object returned by |
resolution |
optional number of points used to sample the estimated density function. |
xlab |
optional x-axis label (see |
ylab |
optional y-axis label (see |
main |
optional plot title (see |
pch |
optional plotting character, i.e., symbol to use (see |
... |
additional graphical arguments to be passed to methods (see |
See Also
Examples
library(DIME)
# generate simulated datasets with underlying uniform and 1-normal components
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(1.5); rsigma <- c(1);
rpi <- c(.10,.90); a <- (-6); b <- 6;
chr1 <- c(-runif(ceiling(rpi[1]*N1),min = a,max =b),
rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]));
chr4 <- c(-runif(ceiling(rpi[1]*N2),min = a,max =b),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]));
# analyzing chromosome 1 and 4
data <- list(chr1,chr4);
# fit NUDGE model with maximum iterations = 20
set.seed(1234);
bestNudge <- nudge.fit(data, max.iter=20);
# QQ-plot
nudge.plot.qq(data,bestNudge);
[Package DIME version 1.3.0 Index]