inudge.plot.qq {DIME} | R Documentation |
QQ-plot of GNG model vs. observed data
Description
Produces a QQ-plot for visual inspection of quality of fit with regards to
the uniform Gaussian (iNUDGE) mixture model estimated using the function
inudge.fit
Usage
inudge.plot.qq(data, obj, resolution = 10, xlab = NULL, ylab = NULL,
main = NULL, pch = NULL, ...)
Arguments
data |
an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze. |
obj |
a list object returned by |
resolution |
optional number of points used to sample the estimated density function. |
xlab |
optional x-axis label (see |
ylab |
optional y-axis label (see |
main |
optional plot title (see |
pch |
optional plotting symbol to use (see |
... |
additional graphical arguments to be passed to methods (see |
See Also
Examples
library(DIME);
# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(1234);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25,1.5); rsigma <- c(1,1);
rpi <- c(.10,.45,.45); a <- (-6); b <- 6;
chr4 <- list(c(-runif(ceiling(rpi[1]*N1),min = a,max =b),
rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2])));
chr9 <- list(c(-runif(ceiling(rpi[1]*N2),min = a,max =b),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2])));
# analyzing chromosome 4 and 9
data <- list(chr4,chr9);
# fit iNUDGE model with 2-normal components and maximum iteration =20
set.seed(1234);
bestInudge <- inudge.fit(data, K=2, max.iter=20)
# QQ-plot
inudge.plot.qq(data,bestInudge);
[Package DIME version 1.3.0 Index]