inudge.plot.comp {DIME}R Documentation

Plot iNUDGE Individual Components

Description

Plot each estimated individual components of iNUDGE model (mixture of uniform and k-normal) fitted using inudge.fit.

Usage

inudge.plot.comp(data, obj, new.plot = TRUE, legpos = NULL, xlim = NULL,
  ylim = NULL, xlab = NULL, ylab = NULL, main = NULL, lwd = NULL,...)

Arguments

data

an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze.

obj

a list object returned by inudge.fit function.

new.plot

optional logical variable on whether to create new plot.

legpos

optional vector of (x,y) location for the legend position

xlim

optional x-axis limit (see par).

ylim

optional y-axis limit (see par).

xlab

optional x-axis label (see par).

ylab

optional y-axis label (see par).

main

optional plot title (see par).

lwd

optional line width for lines in the plot (see par).

...

additional graphical arguments to be passed to methods (see par).

Details

The components representing differential data are denoted by asterisk (*) symbol on the plot legend.

Author(s)

Cenny Taslim taslim.2@osu.edu, with contributions from Abbas Khalili khalili@stat.ubc.ca, Dustin Potter potterdp@gmail.com, and Shili Lin shili@stat.osu.edu

See Also

inudge.plot.mix, inudge.plot.comp, inudge.plot.fit, inudge.plot.qq, DIME.plot.fit, gng.plot.fit.

Examples

library(DIME);
# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(12);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25,1.5); rsigma <- c(1,1); 
rpi <- c(.10,.45,.45); a <- (-6); b <- 6; 
chr4 <- list(c(-runif(ceiling(rpi[1]*N1),min = a,max =b),
  rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]), 
  rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2])));
chr9 <- list(c(-runif(ceiling(rpi[1]*N2),min = a,max =b),
  rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]), 
  rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2])));
# analyzing chromosome 4 and 9
data <- list(chr4,chr9);

# fit iNUDGE model with 2-normal components and maximum iterations = 20
set.seed(12);
bestInudge <- inudge.fit(data, K = 2, max.iter=20);

# plot individual components of iNUDGE
inudge.plot.comp(data,bestInudge);
# plot individual components of iNUDGE an it's mixture component on the same plot
inudge.plot.mix(bestInudge,resolution=1000,new.plot=FALSE);

[Package DIME version 1.3.0 Index]