inudge.plot.comp {DIME} | R Documentation |
Plot iNUDGE Individual Components
Description
Plot each estimated individual components of iNUDGE model
(mixture of uniform and k-normal) fitted using inudge.fit
.
Usage
inudge.plot.comp(data, obj, new.plot = TRUE, legpos = NULL, xlim = NULL,
ylim = NULL, xlab = NULL, ylab = NULL, main = NULL, lwd = NULL,...)
Arguments
data |
an R list of vector of normalized intensities (counts). Each element can correspond to particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze. |
obj |
a list object returned by |
new.plot |
optional logical variable on whether to create new plot. |
legpos |
optional vector of (x,y) location for the legend position |
xlim |
optional x-axis limit (see |
ylim |
optional y-axis limit (see |
xlab |
optional x-axis label (see |
ylab |
optional y-axis label (see |
main |
optional plot title (see |
lwd |
optional line width for lines in the plot (see |
... |
additional graphical arguments to be passed to methods (see |
Details
The components representing differential data are denoted by asterisk (*) symbol on the plot legend.
Author(s)
Cenny Taslim taslim.2@osu.edu, with contributions from Abbas Khalili khalili@stat.ubc.ca, Dustin Potter potterdp@gmail.com, and Shili Lin shili@stat.osu.edu
See Also
inudge.plot.mix
, inudge.plot.comp
,
inudge.plot.fit
, inudge.plot.qq
,
DIME.plot.fit
, gng.plot.fit
.
Examples
library(DIME);
# generate simulated datasets with underlying uniform and 2-normal distributions
set.seed(12);
N1 <- 1500; N2 <- 500; rmu <- c(-2.25,1.5); rsigma <- c(1,1);
rpi <- c(.10,.45,.45); a <- (-6); b <- 6;
chr4 <- list(c(-runif(ceiling(rpi[1]*N1),min = a,max =b),
rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2])));
chr9 <- list(c(-runif(ceiling(rpi[1]*N2),min = a,max =b),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2])));
# analyzing chromosome 4 and 9
data <- list(chr4,chr9);
# fit iNUDGE model with 2-normal components and maximum iterations = 20
set.seed(12);
bestInudge <- inudge.fit(data, K = 2, max.iter=20);
# plot individual components of iNUDGE
inudge.plot.comp(data,bestInudge);
# plot individual components of iNUDGE an it's mixture component on the same plot
inudge.plot.mix(bestInudge,resolution=1000,new.plot=FALSE);