gng.plot.qq {DIME} | R Documentation |
QQ-plot of GNG model vs. observed data
Description
Produces a QQ-plot for visual inspection of quality of fit with regards to
the exponential Gaussian (GNG) mixture model estimated using the function
gng.fit
Usage
gng.plot.qq(data, obj, resolution=10, xlab=NULL, ylab=NULL,
main=NULL, pch=NULL,...)
Arguments
data |
an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze. |
obj |
a list object returned by |
resolution |
optional number of points used to sample the estimated density function. |
xlab |
optional x-axis label (see |
ylab |
optional y-axis label (see |
main |
optional plot title (see |
pch |
optional plotting symbol to use (see |
... |
additional graphical arguments to be passed to methods (see |
Author(s)
Cenny Taslim taslim.2@osu.edu, with contributions from Abbas Khalili khalili@stat.ubc.ca, Dustin Potter potterdp@gmail.com, and Shili Lin shili@stat.osu.edu
See Also
Examples
library(DIME)
# generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
rpi <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
# analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);
# Fitting a GNG model only
bestGng <- gng.fit(data,K=2);
# QQ-plot
gng.plot.qq(data,bestGng)