gng.plot.comp {DIME} | R Documentation |
Plot GNG Individual Components
Description
Plot each estimated individual components of GNG model
(mixture of exponential and k-normal) fitted using gng.fit
.
Usage
gng.plot.comp(data, obj, new.plot = TRUE, legpos = NULL, xlim=NULL,
ylim=NULL, xlab=NULL, ylab=NULL, main=NULL,lwd=NULL,...)
Arguments
data |
an R list of vector of normalized intensities (counts). Each element can correspond to a particular chromosome. User can construct their own list containing only the chromosome(s) they want to analyze. |
obj |
a list object returned by |
new.plot |
optional logical variable on whether to create new plot. |
legpos |
optional vector of (x,y) location for the legend position |
xlim |
optional x-axis limit (see |
ylim |
optional y-axis limit (see |
xlab |
optional x-axis label (see |
ylab |
optional y-axis label (see |
main |
optional plot title (see |
lwd |
optional line width for lines in the plot (see |
... |
additional graphical arguments to be passed to methods (see |
Details
The components representing differential data are denoted by asterisk (*) symbol on the plot legend.
Author(s)
Cenny Taslim taslim.2@osu.edu, with contributions from Abbas Khalili khalili@stat.ubc.ca, Dustin Potter potterdp@gmail.com, and Shili Lin shili@stat.osu.edu
See Also
gng.plot.mix
, gng.plot.comp
, gng.plot.fit
,
gng.plot.qq
, DIME.plot.fit
, inudge.plot.fit
.
Examples
library(DIME);
# generate simulated datasets with underlying exponential-normal components
N1 <- 1500; N2 <- 500; K <- 4; rmu <- c(-2.25,1.50); rsigma <- c(1,1);
rpi <- c(.05,.45,.45,.05); rbeta <- c(12,10);
set.seed(1234);
chr1 <- c(-rgamma(ceiling(rpi[1]*N1),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N1),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N1),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N1),shape = 1,scale = rbeta[2]));
chr2 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
chr3 <- c(-rgamma(ceiling(rpi[1]*N2),shape = 1,scale = rbeta[1]),
rnorm(ceiling(rpi[2]*N2),rmu[1],rsigma[1]),
rnorm(ceiling(rpi[3]*N2),rmu[2],rsigma[2]),
rgamma(ceiling(rpi[4]*N2),shape = 1,scale = rbeta[2]));
# analyzing only chromosome 1 and chromosome 3
data <- list(chr1,chr3);
# Fitting a GNG model with 2-normal component
bestGng <- gng.fit(data,K=2);
# plot individual components of GNG
gng.plot.comp(data,bestGng);
# plot mixture component on top of the individual components plot
gng.plot.mix(bestGng,resolution=1000,new.plot=FALSE);