hist.DHARMa {DHARMa} | R Documentation |
Histogram of DHARMa residuals
Description
The function produces a histogram from a DHARMa output
Usage
## S3 method for class 'DHARMa'
hist(x, breaks = seq(-0.02, 1.02, len = 53),
col = c("red", rep("lightgrey", 50), "red"),
main = "Hist of DHARMa residuals",
xlab = "Residuals (outliers are marked red)", cex.main = 1, ...)
Arguments
x |
a DHARMa simulation output (class DHARMa) |
breaks |
breaks for hist() function |
col |
col for hist bars |
main |
plot main |
xlab |
plot xlab |
cex.main |
plot cex.main |
... |
other arguments to be passed on to hist |
See Also
plotSimulatedResiduals
, plotResiduals
Examples
testData = createData(sampleSize = 200, family = poisson(),
randomEffectVariance = 1, numGroups = 10)
fittedModel <- glm(observedResponse ~ Environment1,
family = "poisson", data = testData)
simulationOutput <- simulateResiduals(fittedModel = fittedModel)
######### main plotting function #############
# for all functions, quantreg = T will be more
# informative, but slower
plot(simulationOutput, quantreg = FALSE)
############# Distribution ######################
plotQQunif(simulationOutput = simulationOutput,
testDispersion = FALSE,
testUniformity = FALSE,
testOutliers = FALSE)
hist(simulationOutput )
############# residual plots ###############
# rank transformation, using a simulationOutput
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE)
# smooth scatter plot - usually used for large datasets, default for n > 10000
plotResiduals(simulationOutput, rank = TRUE, quantreg = FALSE, smoothScatter = TRUE)
# residual vs predictors, using explicit values for pred, residual
plotResiduals(simulationOutput, form = testData$Environment1,
quantreg = FALSE)
# if pred is a factor, or if asFactor = T, will produce a boxplot
plotResiduals(simulationOutput, form = testData$group)
# All these options can also be provided to the main plotting function
# If you want to plot summaries per group, use
simulationOutput = recalculateResiduals(simulationOutput, group = testData$group)
plot(simulationOutput, quantreg = FALSE)
# we see one residual point per RE
[Package DHARMa version 0.4.6 Index]