numerics_summary_do_not_need_alignment {DGP4LCF} | R Documentation |
Numerical summary for important continuous variables that do not need alignment.
Description
Numerical summary for important continuous variables that do not need alignment.
Usage
numerics_summary_do_not_need_alignment(
burnin = 0,
thin_step = 1,
pred_x_truth_indicator = FALSE,
pred_x_truth = NULL,
gibbs_after_mcem_combine_chains_result
)
Arguments
burnin |
A numeric scalar. The saved samples are already after burnin; therefore the default value for this parameter here is 0. Can discard further samples if needed. |
thin_step |
A numeric scalar. The saved samples are already after thinning; therefore the default value for this parameter here is 1. Can be further thinned if needed. |
pred_x_truth_indicator |
A logical value. pred_x_truth_indicator = TRUE means that truth of predicted gene expressions are available. The default value is FALSE. |
pred_x_truth |
Only needed if pred_x_truth_inidcator = TRUE. An array of dimension (n, p, num_time_test), storing true gene expressions in the testing data. |
gibbs_after_mcem_combine_chains_result |
A list of objects returned from the function 'gibbs_after_mcem_combine_chains'. |
Details
This function corresponds to Algorithm 2: Steps 3 and 4 in the main manuscript; therefore reader can consult the paper for more explanations.
Value
Convergence assessment for important continuous variables that do not need alignment, and posterior summary for predicted gene expressions.
Examples
# See examples in vignette
vignette("bsfadgp_regular_data_example", package = "DGP4LCF")