convertToCyclopsData {Cyclops} | R Documentation |
Convert data from two data frames or ffdf objects into a CyclopsData object
Description
convertToCyclopsData
loads data from two data frames or ffdf objects, and inserts it into a Cyclops data object.
Usage
convertToCyclopsData(
outcomes,
covariates,
modelType = "lr",
timeEffectMap = NULL,
addIntercept = TRUE,
checkSorting = NULL,
checkRowIds = TRUE,
normalize = NULL,
quiet = FALSE,
floatingPoint = 64
)
## S3 method for class 'data.frame'
convertToCyclopsData(
outcomes,
covariates,
modelType = "lr",
timeEffectMap = NULL,
addIntercept = TRUE,
checkSorting = NULL,
checkRowIds = TRUE,
normalize = NULL,
quiet = FALSE,
floatingPoint = 64
)
## S3 method for class 'tbl_dbi'
convertToCyclopsData(
outcomes,
covariates,
modelType = "lr",
timeEffectMap = NULL,
addIntercept = TRUE,
checkSorting = NULL,
checkRowIds = TRUE,
normalize = NULL,
quiet = FALSE,
floatingPoint = 64
)
Arguments
outcomes |
A data frame or ffdf object containing the outcomes with predefined columns (see below). |
covariates |
A data frame or ffdf object containing the covariates with predefined columns (see below). |
modelType |
Cyclops model type. Current supported types are "pr", "cpr", lr", "clr", or "cox" |
timeEffectMap |
A data frame or ffdf object containing the convariates that have time-varying effects on the outcome |
addIntercept |
Add an intercept to the model? |
checkSorting |
(DEPRECATED) Check if the data are sorted appropriately, and if not, sort. |
checkRowIds |
Check if all rowIds in the covariates appear in the outcomes. |
normalize |
String: Name of normalization for all non-indicator covariates (possible values: stdev, max, median) |
quiet |
If true, (warning) messages are suppressed. |
floatingPoint |
Specified floating-point representation size (32 or 64) |
Details
These columns are expected in the outcome object:
stratumId | (integer) | (optional) Stratum ID for conditional regression models |
rowId | (integer) | Row ID is used to link multiple covariates (x) to a single outcome (y) |
y | (real) | The outcome variable |
time | (real) | For models that use time (e.g. Poisson or Cox regression) this contains time |
(e.g. number of days) | ||
weights | (real) | (optional) Non-negative weights to apply to outcome |
censorWeights | (real) | (optional) Non-negative censoring weights for competing risk model; will be computed if not provided. |
These columns are expected in the covariates object:
stratumId | (integer) | (optional) Stratum ID for conditional regression models |
rowId | (integer) | Row ID is used to link multiple covariates (x) to a single outcome (y) |
covariateId | (integer) | A numeric identifier of a covariate |
covariateValue | (real) | The value of the specified covariate |
These columns are expected in the timeEffectMap object:
covariateId | (integer) | A numeric identifier of the covariates that have time-varying effects on the outcome |
Value
An object of type cyclopsData
Methods (by class)
-
convertToCyclopsData(data.frame)
: Convert data from twodata.frame
-
convertToCyclopsData(tbl_dbi)
: Convert data from twoAndromeda
tables
Examples
#Convert infert dataset to Cyclops format:
covariates <- data.frame(stratumId = rep(infert$stratum, 2),
rowId = rep(1:nrow(infert), 2),
covariateId = rep(1:2, each = nrow(infert)),
covariateValue = c(infert$spontaneous, infert$induced))
outcomes <- data.frame(stratumId = infert$stratum,
rowId = 1:nrow(infert),
y = infert$case)
#Make sparse:
covariates <- covariates[covariates$covariateValue != 0, ]
#Create Cyclops data object:
cyclopsData <- convertToCyclopsData(outcomes, covariates, modelType = "clr",
addIntercept = FALSE)
#Fit model:
fit <- fitCyclopsModel(cyclopsData, prior = createPrior("none"))