| consensus_cluster {CrossClustering} | R Documentation | 
Get clusters which reach max consensus
Description
Computes the consensus between Ward's minimum variance and Complete-linkage (or Single-linkage) algorithms (i.e., the number of elements classified together by both algorithms).
Usage
consensus_cluster(k, cluster_ward, cluster_other)
Arguments
| k | (int) a vector containing the number of clusters for Ward and for Complete-linkage (or Single-linkage) algorithms, respectively | 
| cluster_ward | an object of class hclust for the Ward algorithm | 
| cluster_other | an object of class hclust for the Complete-linkage (or Single-linkage) algorithm | 
Value
an object of class consensus_cluster with the following
elements:
| elements | list of the elements belonging to each cluster | 
;
| a_star | contingency table of the clustering | 
;
| max_consensus | maximum clustering consensus | 
.
Author(s)
Paola Tellaroli, <paola dot tellaroli at unipd dot it>;;
Marco Bazzi, <bazzi at stat dot unipd dot it>;
Michele Donato, <mdonato at stanford dot edu>.
References
Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2016). Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. PLoS ONE 11(3): e0152333. doi:10.1371/journal.pone.0152333
Examples
library(CrossClustering)
data(toy)
### toy is transposed as we want to cluster samples (columns of the
### original matrix)
toy_dist <- t(toy) |>
  dist(method = "euclidean")
### Hierarchical clustering
cluster_ward <- toy_dist |>
  hclust(method = "ward.D")
cluster_other <- toy_dist |>
  hclust(method = "complete")
### consensus_cluster
consensus_cluster(
  c(3, 4),
  cluster_ward,
  cluster_other
)