cc_get_cluster {CrossClustering} | R Documentation |
Provides the vector of clusters' ID to which each element belong to.
Description
Provides the vector of clusters' ID to which each element belong to.
Usage
cc_get_cluster(x, n_elem)
## Default S3 method:
cc_get_cluster(x, n_elem)
## S3 method for class 'crossclustering'
cc_get_cluster(x, n_elem)
Arguments
x |
list of clustered elements or a |
n_elem |
total number of elements clustered (ignored if x
is of class |
Value
An integer vector of clusters to which the elements belong (1
for the outliers, ID + 1 for the others).
Methods (by class)
-
cc_get_cluster(default)
: default method for cc_get_cluster. -
cc_get_cluster(crossclustering)
: automatically extract inputs from acrossclustering
object
Author(s)
Paola Tellaroli, <paola dot
tellaroli at
unipd dot
it>;;
Marco Bazzi, <bazzi at
stat dot
unipd dot
it>;
Michele Donato, <mdonato at
stanford dot
edu>.
References
Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2016). Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. PLoS ONE 11(3): e0152333. doi:10.1371/journal.pone.0152333
Examples
library(CrossClustering)
data(toy)
### toy is transposed as we want to cluster samples (columns of the
### original matrix)
toy_dist <- t(toy) |>
dist(method = "euclidean")
### Run CrossClustering
toyres <- cc_crossclustering(
toy_dist,
k_w_min = 2,
k_w_max = 5,
k2_max = 6,
out = TRUE
)
### cc_get_cluster
cc_get_cluster(toyres[], 7)
### cc_get_cluster directly from a crossclustering object
cc_get_cluster(toyres)