rmsePCAandWALS {Correlplot} | R Documentation |
Generate a table of root mean square error (RMSE) statistics for principal component analysis (PCA) and weighted alternating least squares (WALS).
Description
Function rmsePCAandWALS
creates table with the RMSE for each variable, for a low-rank
approximation to the correlation matrix obtained by PCA or WALS.
Usage
rmsePCAandWALS(R, output, digits = 4, omit.diagonals = c(FALSE,FALSE,TRUE,TRUE))
Arguments
R |
The correlation matrix |
output |
A list object with four approximationst to the correlation matrix |
digits |
The number of digits used in the output |
omit.diagonals |
Vector of four logicals for omitting the diagonal of the correlation matrix for RMSE calculations. Defaults to c(FALSE,FALSE,TRUE,TRUE), to include the diagonal for PCA and exclude it for WALS |
Value
A matrix with one row per variable and four columns for RMSE statistics.
Author(s)
Jan Graffelman (jan.graffelman@upc.edu)
References
Graffelman, J. and De Leeuw, J. (2023) Improved approximation and visualization of the correlation matrix. The American Statistician pp. 1–20. doi:10.1080/00031305.2023.2186952
See Also
Examples
data(HeartAttack)
X <- HeartAttack[,1:7]
X[,7] <- log(X[,7])
colnames(X)[7] <- "logPR"
R <- cor(X)
## Not run:
out <- FitRwithPCAandWALS(R)
Results <- rmsePCAandWALS(R,out)
## End(Not run)