Keller {Correlplot} | R Documentation |
Program Keller
calculates a rank p approximation to a correlation matrix according to Keller's method.
Description
Keller's method is based on iterated eigenvalue decompositions that are used to adjust the diagonal of the correlation matrix.
Usage
Keller(R, eps = 1e-06, nd = 2, itmax = 10)
Arguments
R |
A correlation matrix |
eps |
Numerical criterion for convergence (default |
nd |
Number of dimensions used in the spectral decomposition (default |
itmax |
The maximum number of iterations |
Value
A matrix containing the approximation to the correlation matrix-
Author(s)
Jan Graffelman (jan.graffelman@upc.edu)
References
Keller, J.B. (1962) Factorization of Matrices by Least-Squares. Biometrika, 49(1 and 2) pp. 239–242.
Graffelman, J. and De Leeuw, J. (2023) Improved approximation and visualization of the correlation matrix. The American Statistician pp. 1–20. Available online as latest article doi:10.1080/00031305.2023.2186952
See Also
Examples
data(Kernels)
R <- cor(Kernels)
Rhat <- Keller(R)
[Package Correlplot version 1.1.0 Index]