group_adj_perturb {CommKern} | R Documentation |
Group adjacency matrices
Description
Description of the simulated group adjacency matrices function.
Usage
group_adj_perturb(group_network_list, n_nets, n_nodes)
Arguments
group_network_list |
the output from
|
n_nets |
the number of networks simulated |
n_nodes |
the number of nodes in each simulated network (will be the same across all networks) |
Details
This function takes the output from the group_network_perturb
function, which is a list of data frames summarizing each simulated network,
and creates an array of adjacency matrices. These adjacency matrices can then
be used as input to any community detection algorithm (such as the
hierarchical multimodal spinglass algorithm, hms
).
Value
an array of adjacency matrices of dimension (n_nets x n_nodes x n_nodes)
See Also
Examples
# Example 1
sim_nofuzzy <-
group_network_perturb(
n_nodes = 45,
n_comm = 3,
n_nets = 3,
perturb_prop = 0.1,
wcr = c(8, 8),
bcr = c(1.5, 8)
)
nofuzzy_adj <-
group_adj_perturb(sim_nofuzzy, n_nets = 3, n_nodes = 45)
if (require(pheatmap)) {
pheatmap::pheatmap(
nofuzzy_adj[1,,],
treeheight_row = FALSE,
treeheight_col = FALSE
)
}
# Example 2
sim_fuzzy <-
group_network_perturb(
n_nodes = 45,
n_comm = 3,
n_nets = 3,
perturb_prop = 0.1,
wcr = c(8, 8),
bcr = c(1.5, 8),
bfcr = c(3, 8),
fuzzy_comms = c('comm_b','comm_c')
)
fuzzy_adj <-
group_adj_perturb(sim_fuzzy, n_nets = 3, n_nodes = 45)
if (require(pheatmap)) {
pheatmap::pheatmap(
fuzzy_adj[2,,],
treeheight_row = FALSE,
treeheight_col = FALSE
)
}