GetCensWeight {Colossus} | R Documentation |
Calculates and returns data for time by hazard and survival to estimate censoring rate
Description
GetCensWeight
uses user provided data, time/event columns, vectors specifying the model, and options generate an estimate of the censoring rate, plots, and returns the data
Usage
GetCensWeight(
df,
time1,
time2,
event0,
names,
Term_n,
tform,
keep_constant,
a_n,
modelform,
fir,
control,
plot_options,
model_control = list(),
Strat_Col = "e"
)
Arguments
df |
a data.table containing the columns of interest |
time1 |
column used for time period starts |
time2 |
column used for time period end |
event0 |
column used for event status |
names |
columns for elements of the model, used to identify data columns |
Term_n |
term numbers for each element of the model |
tform |
list of string function identifiers, used for linear/step |
keep_constant |
binary values to denote which parameters to change |
a_n |
list of initial parameter values, used to determine number of parameters |
modelform |
string specifying the model type: M, ME, A, PA, PAE, GMIX, GMIX-R, GMIX-E |
fir |
term number for the initial term, used for models of the form T0*f(Ti) in which the order matters |
control |
list of parameters controlling the convergence, see Def_Control() for options or vignette("starting_description") |
plot_options |
list of parameters controlling the plot options, see RunCoxPlots() for different options |
model_control |
controls which alternative model options are used, see Def_model_control() for options and vignette("Alt_Run_opt") for further details |
Strat_Col |
column to stratify by if needed |
Value
saves the plots in the current directory and returns a data.table of time and corresponding hazard, cumulative hazard, and survival
Examples
library(data.table)
## basic example code reproduced from the starting-description vignette
df <- data.table::data.table("UserID"=c(112, 114, 213, 214, 115, 116, 117),
"Starting_Age"=c(18, 20, 18, 19, 21, 20, 18),
"Ending_Age"=c(30, 45, 57, 47, 36, 60, 55),
"Cancer_Status"=c(0, 0, 1, 0, 1, 0, 0),
"a"=c(0, 1, 1, 0, 1, 0, 1),
"b"=c(1, 1.1, 2.1, 2, 0.1, 1, 0.2),
"c"=c(10, 11, 10, 11, 12, 9, 11),
"d"=c(0, 0, 0, 1, 1, 1, 1))
# For the interval case
time1 <- "Starting_Age"
time2 <- "Ending_Age"
event <- "Cancer_Status"
names <- c('a','b','c','d')
Term_n <- c(0,1,1,2)
tform <- c("loglin","lin","lin","plin")
modelform <- "M"
fir <- 0
a_n <- c(0.1, 0.1, 0.1, 0.1)
keep_constant <- c(0,0,0,0)
der_iden <- 0
df$censor <- (df$Cancer_Status==0)
event <- "censor"
control <- list("Ncores"=2,'lr' = 0.75,'maxiter' = 20,'halfmax' = 5,
'epsilon' = 1e-6,'dbeta_max' = 0.5,'deriv_epsilon' = 1e-6,
'abs_max'=1.0,'change_all'=TRUE,'dose_abs_max'=100.0,'verbose'=FALSE,
'ties'='breslow','double_step'=1)
plot_options <- list("name"=paste(tempfile(),"run_06",sep=""),"verbose"=FALSE,
"studyID"="studyID","age_unit"="years")
dft <- GetCensWeight(df, time1, time2, event, names, Term_n, tform,
keep_constant, a_n, modelform, fir, control, plot_options)
t_ref <- dft$t
surv_ref <- dft$surv
t_c <- df$t1
cens_weight <- approx(t_ref, surv_ref, t_c,rule=2)$y