[.clustering {Clustering} | R Documentation |
Filter metrics in a clustering
object returning a new
clustering
object.
Description
Generates a new filtered clustering
object.
Usage
## S3 method for class 'clustering'
clustering[condition = TRUE]
Arguments
clustering |
The |
condition |
Expression to filter the |
Details
This function allows you to filter the data set for a given
evaluation metric. The evaluation metrics available are:
Algorithm, Distance, Clusters, Data, Var, Time, Entropy,
Variation_information, Precision, Recall, F_measure, Fowlkes_mallows_index,
Connectivity, Dunn, Silhouette and TimeAtt
.
Value
A clustering
object filtered from the input parameters.
Examples
result <- Clustering::clustering(df = Clustering::basketball, algorithm = 'clara',
min=3, max=4, metrics = c('Precision','Recall'))
result[Precision > 0.14 & Recall > 0.11]
[Package Clustering version 1.7.10 Index]