plot_clustering_difference_facet {ClustAssess} | R Documentation |
Clustering Method Stability Facet Plot
Description
Display the distribution of the EC consistency for each clustering method and each resolution value on a given embedding The 'all' field of the object returned by the 'get_clustering_difference_object' method is used.
Usage
plot_clustering_difference_facet(
clustering_difference_object,
embedding,
low_limit = 0,
high_limit = 1,
grid = TRUE
)
Arguments
clustering_difference_object |
An object returned by the 'get_clustering_difference_object' method. |
embedding |
An embedding (only the first two dimensions will be used for visualisation). |
low_limit |
The lowest value of ECC that will be displayed on the embedding. |
high_limit |
The highest value of ECC that will be displayed on the embedding. |
grid |
Boolean value indicating whether the facet should be a grid (where each row is associated with a resolution value and each column with a clustering method) or a wrap. |
Value
A ggplot2 object.
Examples
set.seed(2021)
# create an artificial expression matrix
expr_matrix = matrix(c(runif(250*10), runif(250*10, min = 5, max = 7)), nrow = 500)
rownames(expr_matrix) = as.character(1:500)
pca_embedding = irlba::irlba(expr_matrix, nv = 2)
pca_embedding = pca_embedding$u %*% diag(pca_embedding$d)
rownames(pca_embedding) = as.character(1:500)
adj_matrix = Seurat::FindNeighbors(pca_embedding,
k.param = 10,
nn.method = "rann",
verbose = FALSE,
compute.SNN = FALSE)$nn
clust_diff_obj = get_clustering_difference(graph_adjacency_matrix = adj_matrix,
resolution = c(0.5, 1),
n_repetitions = 10,
algorithm = 1:2,
verbose = FALSE)
plot_clustering_difference_facet(clust_diff_obj,pca_embedding)
[Package ClustAssess version 0.3.0 Index]