| element_sim_matrix {ClustAssess} | R Documentation | 
Pairwise Comparison of Clusterings
Description
Compare a set of clusterings by calculating their pairwise average element-centric clustering similarities.
Usage
element_sim_matrix(
  clustering_list,
  output_type = "matrix",
  alpha = 0.9,
  r = 1,
  rescale_path_type = "max",
  ppr_implementation = "prpack",
  dist_rescaled = FALSE,
  row_normalize = TRUE,
  ncores = 1
)
Arguments
| clustering_list | The list of clustering results, each of which is either: 
 | 
| output_type | A string specifying whether the output should be a matrix or a data.frame. | 
| alpha | A numeric giving the personalized PageRank damping factor; 1 - alpha is the restart probability for the PPR random walk. | 
| r | A numeric hierarchical scaling parameter. | 
| rescale_path_type | A string; rescale the hierarchical height by: 
 | 
| ppr_implementation | Choose a implementation for personalized page-rank calculation: 
 | 
| dist_rescaled | A logical: if TRUE, the linkage distances are linearly rescaled to be in-between 0 and 1. | 
| row_normalize | Whether to normalize all rows in clustering_result so they sum to one before calculating ECS. It is recommended to set this to TRUE, which will lead to slightly different ECS values compared to clusim. | 
| ncores | the number of parallel R instances that will run the code. If the value is set to 1, the code will be run sequentially. | 
Value
A matrix or data.frame containing the pairwise ECS values.
References
Gates, A. J., Wood, I. B., Hetrick, W. P., & Ahn, Y. Y. (2019). Element-centric clustering comparison unifies overlaps and hierarchy. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-44892-y
Examples
clustering.list = list()
for (i in 1:20) {
  clustering.list[[i]] = kmeans(mtcars, 3)$cluster
}
element_sim_matrix(clustering.list, output_type="matrix")