hyperparam.alpha {ClusTorus}R Documentation

Selecting optimal level based on the runs of the number of clusters

Description

hyperparam.alpha evaluates the numbers of clusters for various levels, and select the optimal level based on the runs of the cluster numbers.

Usage

hyperparam.alpha(icp.torus, alphavec = NULL, alpha.lim = 0.15)

Arguments

icp.torus

an object containing all values to compute the conformity score, which will be constructed with icp.torus.score.

alphavec

either a scalar or a vector, or even NULL for the levels. Default value is NULL. If NULL, then alphavec is automatically generated as a sequence from 0 to alpha.lim.

alpha.lim

a positive number lower than 1, which is the upper bound of Default is 0.15.

Value

returns a list object which contains a data.frame for the numbers of clusters corresponding to the levels and the optimal level.

See Also

hyperparam.J, hyperparam.torus icp.torus.score

Examples


data <- toydata2[, 1:2]
n <- nrow(data)
split.id <- rep(2, n)
split.id[sample(n, floor(n/2))] <- 1
icp.torus <- icp.torus.score(data, split.id = split.id, method = "kmeans",
                             kmeansfitmethod = "ge", init = "h",
                             param = list(J = 25), verbose = TRUE)
hyperparam.alpha(icp.torus)


[Package ClusTorus version 0.1.3 Index]