hyperparam.J {ClusTorus} | R Documentation |
Selecting optimal number of mixture components based on various criteria
Description
hyperparam.J
evaluates criterion for each icp.torus
objects, and select
the optimal number of mixture components based on the evaluated criterion.
Usage
hyperparam.J(icp.torus.objects, option = c("risk", "AIC", "BIC"))
## S3 method for class 'hyperparam.J'
plot(x, ...)
Arguments
icp.torus.objects |
a list whose elements are icp.torus objects, generated by
|
option |
a string one of "risk", "AIC", or "BIC", which determines the criterion for the model selection. "risk" is based on the negative log-likelihood, "AIC" for the Akaike Information Criterion, and "BIC" for the Bayesian Information Criterion. |
x |
|
... |
additional parameter for ggplot2::ggplot() |
Value
returns a hyperparam.J
object which contains a data.frame
for
the evaluated criterion corresponding to each number of components, the optimal
number of components, and the corresponding icp.torus
object.
References
Jung, S., Park, K., & Kim, B. (2021). Clustering on the torus by conformal prediction. The Annals of Applied Statistics, 15(4), 1583-1603.
Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723.
Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461-464.
See Also
icp.torus
, hyperparam.torus
,
hyperparam.alpha
Examples
data <- toydata1[,1:2]
n <- nrow(data)
split.id <- rep(2,n)
split.id[ sample(n,floor(n/2)) ] <- 1
Jvec = 4:20
icp.torus.objects <- icp.torus(data, split.id = split.id, model = "kmeans", J = Jvec)
hyperparam.J(icp.torus.objects, option = "AIC")