cp.torus.kde {ClusTorus} | R Documentation |
Conformal prediction set indices with kernel density estimation
Description
cp.torus.kde
computes conformal prediction set indices
(TRUE if in the set) using kernel density estimation as conformity score.
Usage
cp.torus.kde(data, eval.point = grid.torus(), level = 0.1, concentration = 25)
## S3 method for class 'cp.torus.kde'
plot(x, level.id = 1, ...)
Arguments
data |
n x d matrix of toroidal data on |
eval.point |
N x N numeric matrix on |
level |
either a scalar or a vector, or even |
concentration |
positive number which has the role of |
x |
|
level.id |
an integer among |
... |
additional parameter for ggplot2::ggplot() |
Value
If level
is NULL
, then return kde at eval.point
and at data points.
If level
is a vector, return the above and prediction set indices
for each value of level.
References
Jung, S., Park, K., & Kim, B. (2021). Clustering on the torus by conformal prediction. The Annals of Applied Statistics, 15(4), 1583-1603.
Di Marzio, M., Panzera, A., & Taylor, C. C. (2011). Kernel density estimation on the torus. Journal of Statistical Planning and Inference, 141(6), 2156-2173.
See Also
Examples
data <- ILE[1:200, 1:2]
cp.torus.kde(data, eval.point = grid.torus(),
level = 0.05, concentration = 25)