variantT {ClassComparison} | R Documentation |
Classes for Variant T-tests
Description
Classes to perform row-by-row paired or unequal variance t-tests on microarray or proteomics data.
Usage
MultiTtestPaired(data, classes, pairing)
MultiTtestUnequal(data, classes)
## S4 method for signature 'MultiTtestPaired'
summary(object, ...)
## S4 method for signature 'MultiTtestUnequal'
summary(object, ...)
Arguments
data |
Either a data frame or matrix with numeric values or an
|
classes |
If |
pairing |
A numerical vector indicating which samples are paired. |
object |
A |
... |
Unused; optional extra parameters for |
Creating objects
Although objects can be created using new
, the better method is
to use the MultiTtestPaired
or MultiTtestUnequal
functions. In the simplest case, you simply pass in a data matrix
and a logical vector assigning classes to the columns (and, in the
case of a paired t-test, a numeric vector describing the pairing), and
the constructor performs row-by-row two-sample t-tests and computes
the associated (single test) p-values. To adjust for multiple
testing, you can pass the p-values on to the Bum
class.
If you use a factor instead of a logical vector, then the t-test
compares the first level of the factor to everything else. To handle
the case of multiple classes, see the MultiLinearModel
class.
As with other class comparison functions that are part of the OOMPA,
we can also perform statistical tests on
ExpressionSet
objects from
the BioConductor libraries. In this case, we pass in an
ExpressionSet
object along with the name of a factor to use for
splitting the data.
Extends
Both classes extend class MultiTtest
, directly. See that
class for descriptions of the inherited methods and slots.
Slots
df
:The
MultiTtestUnequal
class adds a slot to record e gene-by-gene degrees of freedom, which can change along with the variances.
Methods
- summary
signature(object = MultiTtestPaired)
: Write out a summary of the object.- summary
signature(object = MultiTtestUnequal)
: Write out a summary of the object.
Author(s)
Kevin R. Coombes krc@silicovore.com
References
OOMPA
See Also
Examples
showClass("MultiTtestPaired")
showClass("MultiTtestUnequal")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c('A', 'B'), each=25))
res <- MultiTtestUnequal(dat, cla)
summary(res)
hist(res, breaks=101)
plot(res, res@p.values)
pairing <- rep(1:25, 2)
res <- MultiTtestPaired(dat, cla, pairing)
summary(res)
plot(res)
hist(res@p.values, breaks=101)