PIN {ClaimsProblems}R Documentation

Piniles' rule

Description

This function returns the awards vector assigned by the Piniles' rule (PIN) to a claims problem.

Usage

PIN(E, d, name = FALSE)

Arguments

E

The endowment.

d

The vector of claims.

name

A logical value.

Details

Let E0E\ge 0 be the endowment to be divided and dRnd\in \mathcal{R}^n the vector of claims with d0d\ge 0 and such that D=i=1ndiED=\sum_{i=1}^{n} d_i\ge E, the sum of claims DD exceeds the endowment.

The Piniles' rule coincides with the constrained equal awards rule (CEA) applied to the problem (E,d/2)(E, d/2) if the endowment is less or equal than the half-sum of the claims, D/2D/2. Otherwise it assigns to each claimant ii half of the claim, di/2d_i/2 and, then, it distributes the remainder with the CEA rule. Therefore:

If ED2E \le \frac{D}{2} then,

PIN(E,d)=CEA(E,d/2).PIN(E,d) = CEA(E,d/2).

If ED2E \ge \frac{D}{2} then,

PIN(E,d)=d/2+CEA(ED/2,d/2).PIN(E,d)=d/2+CEA(E-D/2,d/2).

Value

The awards vector selected by the PIN rule. If name = TRUE, the name of the function (PIN) as a character string.

References

Piniles, H.M. (1861). Darkah shel Torah. Forester, Vienna.

Thomson, W. (2019). How to divide when there isn't enough. From Aristotle, the Talmud, and Maimonides to the axiomatics of resource allocation. Cambridge University Press.

See Also

allrules, CEA, Talmud

Examples

E=10
d=c(2,4,7,8)
PIN(E,d)

[Package ClaimsProblems version 0.2.1 Index]