summary.seminaive {CensSpatial}R Documentation

Summary of a seminaive object

Description

summary method for class "seminaive".

Usage

## S3 method for class 'seminaive'
summary(object,...)

Arguments

object

object of the class "seminaive" (see Seminaive function).

...

Additional arguments.

Value

mean.str

Estimates for the mean structure parameters \mathbf{beta} for seminaive method.

var.str

Estimates for the variance structure parameters \sigma^2, \phi for seminaive method.

predictions

predictions for seminaive method.

Author(s)

Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>, Victor H. Lachos <<hlachos@ime.unicamp.br>> and Christian E. Galarza <<cgalarza88@gmail.com>>

Maintainer: Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>

References

Schelin, L. & Sjostedt-de Luna, S. (2014). Spatial prediction in the presence of left-censoring. Computational Statistics and Data Analysis, 74.

See Also

SAEMSCL

Examples





n<-200 ### sample size for estimation.
n1=100 ### number of observation used in the prediction.

###simulated coordinates.
r1=sample(seq(1,30,length=400),n+n1)
r2=sample(seq(1,30,length=400),n+n1)
coords=cbind(r1,r2)### total coordinates (used in estimation and prediction).
coords1=coords[1:n,]####coordinates used for estimation.

type="matern"### covariance structure.

xtot<-cbind(1,runif((n+n1)),runif((n+n1),2,3))## X matrix for estimation and prediction.
xobs=xtot[1:n,]## X matrix for estimation.

###simulated data.
obj=rspacens(cov.pars=c(3,.3,0),beta=c(5,3,1),x=xtot,coords=coords,kappa=1.2,
cens=0.25,n=(n+n1),n1=n1,cov.model=type,cens.type="left")

data2=obj$datare
data2[,4:5]=xobs[,-1]

cc=obj$cc
y=obj$datare[,3]
cutoff=rep(obj$cutoff,length(y[cc==1]))

###seminaive algorithm
r=Seminaive(data=data2,y.col=3,covar=TRUE,coords.col=1:2,covar.col=4:5,cov.model="matern",
thetaini=c(.1,.2),fix.nugget=TRUE,nugget=0,kappa=1.5,cons=c(0.1,2,0.5),MaxIter=100,
cc=obj$cc,cutoff=cutoff,copred=obj$coords1,trend=~V4+V5)

summary(r)





[Package CensSpatial version 3.6 Index]