predgraphics {CensSpatial} | R Documentation |
Prediction graphics for SAEM Algortihm for censored spatial data.
Description
This function provides prediction raster graphics representation and its standard deviation.
Usage
predgraphics(xpred = NULL, grid1, est, points = TRUE,obspoints = 1:sum(est$cc == 0),
colors = terrain.colors(100),sdgraph = TRUE,xlab="X Coord",ylab="Y Coord",
main1="Predicted response", main2="Standard deviation predicted",
xlim=c(min(est$coords[,1]),max(est$coords[,1])),ylim=c(min(est$coords[,2]),
max(est$coords[,2])))
Arguments
xpred |
x design matrix for the prediction coordinates (must be specified when est$trend="other"). |
grid1 |
grid with the coordinates of the prediction graphics. |
est |
object of class "SAEMSpatialCens". |
points |
(logical), it indicates if some of the observed points may be plotted in the prediction raster graphic (default, points= |
obspoints |
(vector) if points= |
colors |
colors pallete used for the graphics (By default |
sdgraph |
(logical) it indicates if the standard deviation of the prediction points graphic must be plotted (default sdgraph= |
xlab |
label for x coordinate of the two plots. |
ylab |
label for y coordinate. |
main1 |
an overall title for the prediction plot. |
main2 |
an overall title for the standard deviation prediction plot. |
xlim |
x axis limits for the two plots. |
ylim |
y axis limits for the two plots. |
Value
in addition to the raster graphics for prediction, the next values are retorned:
datapred |
data.frame with the coordinates and the predicted points used in the prediction raster graphic. |
datasdpred |
data.frame with the coordinates and the standard deviation predicted points used in the standard deviation prediction raster graphic. |
Author(s)
Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>, Victor H. Lachos <<hlachos@ime.unicamp.br>> and Christian E. Galarza <<cgalarza88@gmail.com>>
Maintainer: Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>
References
DELYON, B., LAVIELLE, M.,ANDMOULI NES, E. (1999). Convergence ofa stochastic approximation version of the EM algorithm.Annals of Statistic-s27, 1, 94-128.
Diggle, P. & Ribeiro, P. (2007). Model-Based Geostatistics. Springer Series in Statistics.
See Also
Examples
data(depth)
cc=depth$cc
y=depth$depth
coords=depth[,1:2]
cov.ini=c(1500,30)
est=SAEMSCL(cc,y,cens.type="left",trend="cte",coords=coords,M=15,perc=0.25,
MaxIter=100,pc=0.2,cov.model="gaussian",fix.nugget=FALSE,nugget=10,
inits.sigmae=cov.ini[2],inits.phi=cov.ini[1], search=TRUE,lower=c(0.00001,0.00001),
upper=c(10000,100))
coorgra1=seq(min(coords[,1]),max(coords[,1]),length=50)
coorgra2=seq(min(coords[,2]),max(coords[,2]),length=50)
grid1=expand.grid(x=coorgra1,y=coorgra2)
xpred=rep(1,2500)
predgraphics(xpred=xpred,est=est,grid1=grid1,points=TRUE,sdgraph=TRUE)