localinfmeas {CensSpatial} | R Documentation |
Local influence measures.
Description
It computes some measures and plots to asses the local influence of outliers in the SAEM spatial estimation for censored spatial observations, for six types of covariance functions (est$type): "exponential", "matern", "gauss", "spherical","powered.exponential" or "stable" and "cauchy".
Usage
localinfmeas(est, fix.nugget = TRUE, diag.plot = TRUE, type.plot = "all", c = 3)
Arguments
est |
object of the class "SAEMSpatialCens". See |
fix.nugget |
(logical) it indicates if the |
diag.plot |
(logical) it indicates if diagnostic plots must be showed. |
type.plot |
type of plot (all: all graphics, rp: response perturbation,smp: scale matrix perturbation, evp: explanatory variable perturbation). |
c |
constant used for fixing the limit of detection (benchmark value). |
Details
this function uses the Maximum likelihood expectation (MLE) under three perturbation schemes,
in the response (M(0)_y
), scale matrix (M(0)_{\Sigma}
) and explanatory variables (M(0)_X
), to detect the influence of outliers in the SAEM estimation procedure.
Value
in addition to the diagnostic graphics (response, scale matrix and explanatory variable schemes, respectively), the function returns the next values.
Qwrp |
negative |
Qwsmp |
negative |
Qwevp |
negative |
respper |
data.frame containing an indicator of the presence of atypical values
and the |
smper |
data.frame containing an indicator of the presence of atypical values
and the |
expvper |
a data.frame containing an indicator of the presence of atypical values
and the |
limrp |
limit of detection for outliers for the response perturbation scheme. |
limsmp |
limit of detection for outliers for the scale matrix perturbation scheme. |
limevp |
limit of detection for outliers for the explanatory variable perturbation scheme. |
Author(s)
Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>, Victor H. Lachos <<hlachos@ime.unicamp.br>> and Christian E. Galarza <<cgalarza88@gmail.com>>
Maintainer: Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>
References
Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, Series B,, 48, 133-169.
Zhu, H., Lee, S., Wei, B. & Zhou, J. (2001). Case-deletion measures for models with incomplete data. Biometrika, 88, 727-737.
See Also
Examples
require(geoR)
data("Missouri")
data=Missouri
data$V3=log((data$V3))
cc=data$V5
y=data$V3
n=127
k=1
datare1=data
coords=datare1[,1:2]
data1=data.frame(coords,y)
data1=data1[cc==0,]
geodata=as.geodata(data1,y.col=3,coords.col=1:2)
v=variog(geodata)
v1=variofit(v)
cov.ini=c(0,2)
est=SAEMSCL(cc,y,cens.type="left",trend="cte",coords=coords,M=15,perc=0.25,
MaxIter=5,pc=0.2,cov.model="exponential",fix.nugget=TRUE,nugget=2,
inits.sigmae=cov.ini[2],inits.phi=cov.ini[1], search=TRUE,lower=0.00001,upper=100)
w=localinfmeas(est,fix.nugget=TRUE,c=3)
res=w$respper
res[res[,1]=="atypical obs",]
sm=w$smper
sm[sm[,1]=="atypical obs",]
ev=w$expvper
ev[ev[,1]=="atypical obs",]
##############ANOTHER EXAMPLE#########
n<-200 ### sample size for estimation
n1=100 ### number of observation used in the prediction
###simulated coordinates
r1=sample(seq(1,30,length=400),n+n1)
r2=sample(seq(1,30,length=400),n+n1)
coords=cbind(r1,r2)
coords1=coords[1:n,]
cov.ini=c(0.2,0.1)
type="exponential"
xtot=as.matrix(rep(1,(n+n1)))
xobs=xtot[1:n,]
beta=5
###simulated data
obj=rspacens(cov.pars=c(3,.3,0),beta=beta,x=xtot,coords=coords,cens=0.25,n=(n+n1),
n1=n1,cov.model=type,cens.type="left")
data2=obj$datare
cc=obj$cc
y=obj$datare[,3]
##### generating atypical observations###
y[91]=y[91]+4
y[126]=y[126]+4
y[162]=y[162]+4
coords=obj$datare[,1:2]
###initial values###
cov.ini=c(0.2,0.1)
est=SAEMSCL(cc,y,cens.type="left",trend="cte",coords=coords,M=15,perc=0.25,
MaxIter=10,pc=0.2,cov.model=type,fix.nugget=TRUE,nugget=0,inits.sigmae=cov.ini[1],
inits.phi=cov.ini[2],search=TRUE,lower=0.00001,upper=50)
w=localinfmeas(est,fix.nugget=TRUE,c=3)
res=w$respper
res[res[,1]=="atypical obs",]
sm=w$smper
sm[sm[,1]=="atypical obs",]
ev=w$expvper
ev[ev[,1]=="atypical obs",]