derivQfun {CensSpatial} | R Documentation |
logQ
function and its derivates)
It computes the logQ
function, its derivates of first and second order and the inverse of the hessian matrix for the SAEM estimated parameters.
derivQfun(est, fix.nugget = TRUE)
est |
object of the class "SAEMSpatialCens". See |
fix.nugget |
(logical) it indicates if the |
The logQ
function refers to the logarithm of the Maximum likelihood conditional expectation, the first and second moments of the truncated normal distribution of censored data are involved in its computation.
Qlogvalue |
value of the |
gradQ |
gradient for the |
HQ |
hessian Matrix for the |
Qinv |
inverse of the negative Hessian matrix for the |
Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>, Victor H. Lachos <<hlachos@ime.unicamp.br>> and Christian E. Galarza <<cgalarza88@gmail.com>>
Maintainer: Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>
Diggle, P. & Ribeiro, P. (2007). Model-Based Geostatistics. Springer Series in Statistics.
Gradshtejn, I. S. & Ryzhik, I. M. (1965). Table of integrals, series and products. Academic Press.
require(geoR)
data("Missouri")
data=Missouri[1:70,]
data$V3=log((data$V3))
cc=data$V5
y=data$V3
datare1=data
coords=datare1[,1:2]
data1=data.frame(coords,y)
data1=data1[cc==0,]
geodata=as.geodata(data1,y.col=3,coords.col=1:2)
v=variog(geodata)
v1=variofit(v)
cov.ini=c(0,2)
est=SAEMSCL(cc,y,cens.type="left",trend="cte",coords=coords,M=15,perc=0.25,MaxIter=5,pc=0.2,
cov.model="exponential",fix.nugget=TRUE,nugget=2,inits.sigmae=cov.ini[2],inits.phi=cov.ini[1],
search=TRUE,lower=0.00001,upper=50)
d1=derivQfun(est)
d1$QI