algnaive12 {CensSpatial} | R Documentation |
Naive 1 and Naive 2 method for spatial prediction.
Description
This function performs spatial censored estimation and prediction for left and right censure through the Naive 1 and Naive 2 methods.
Usage
algnaive12(data, cc, copred, thetaini, y.col = 3,coords.col = 1:2,covar=FALSE, covar.col,
fix.nugget = TRUE, nugget, kappa = 0, cutoff, cov.model = "exponential", trend)
Arguments
data |
data.frame containing the coordinates, covariates and the response variable (in any order). |
cc |
(binary vector) indicator of censure (1: censored observation 0: observed). |
copred |
coordinates used in the prediction procedure. |
thetaini |
initial values for the |
y.col |
(numeric) column of data.frame that corresponds to the response variable. |
coords.col |
(numeric) columns of data.frame that corresponds to the coordinates of the spatial data. |
covar |
(logical) indicates the presence of covariates in the spatial censored estimation
( |
covar.col |
(numeric) columns of data.frame that corresponds to the covariates in the spatial censored linear model estimation. |
fix.nugget |
(logical) it indicates if the |
nugget |
(numeric) values of the |
kappa |
value of |
cutoff |
(vector) Limit of censure detection ( rc:>cutoff, lc:<cutoff). |
cov.model |
structure of covariance (see |
trend |
it specifies the mean part of the model. See documentation of trend.spatial from geoR for further details. By default it takes |
Details
The Naive 1 and Naive 2 are computed as in Schelin (2014). The naive 1 replaces the censored observations by the limit of detection (LD) and it performs estimation and prediction with this data. Instead of 1, the naive 2 replaces the censored observations by LD/2.
Value
beta1 |
beta parameter for the mean structure in the Naive 1 method. |
beta2 |
beta parameter for the mean structure in the Naive 2 method. |
theta1 |
vector of estimate parameter for the mean and covariance structure ( |
theta2 |
vector of estimate parameter for the mean and covariance structure ( |
predictions1 |
predictions obtained for the Naive 1 method. |
predictions2 |
predictions obtained for the Naive 2 method. |
AIC1 |
AIC of the estimated model in the Naive 1 method. |
AIC2 |
AIC of the estimated model in the Naive 2 method. |
BIC1 |
BIC of the estimated model in the Naive 1 method. |
BIC2 |
BIC of the estimated model in the Naive 2 method. |
loglik1 |
log likelihood for the estimated model in the Naive 1 method. |
loglik2 |
log likelihood for the estimated model in the Naive 2 method. |
sdpred1 |
standard deviations of predictions in the Naive 1 method. |
sdpred2 |
standard deviations of predictions in the Naive 2 method. |
type |
covariance function used in estimation. |
trend1 |
trend form for the mean structure. |
Author(s)
Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>, Victor H. Lachos <<hlachos@ime.unicamp.br>> and Christian E. Galarza <<cgalarza88@gmail.com>>
Maintainer: Alejandro Ordonez <<ordonezjosealejandro@gmail.com>>
References
Schelin, L. & Sjostedt-de Luna, S. (2014). Spatial prediction in the presence of left-censoring. Computational Statistics and Data Analysis, 74.
See Also
Examples
###simulated coordinates
n<-200 ### sample size for estimation.
n1=100 ### number of observation used in the prediction.
###simulated coordinates
r1=sample(seq(1,30,length=400),n+n1)
r2=sample(seq(1,30,length=400),n+n1)
coords=cbind(r1,r2)### total coordinates (used in estimation and prediction).
coords1=coords[1:n,]####coordinates used for estimation.
type="matern"### covariance structure.
xtot<-cbind(1,runif((n+n1)),runif((n+n1),2,3))## X matrix for estimation and prediction.
xobs=xtot[1:n,]## X matrix for estimation.
###simulated data
obj=rspacens(cov.pars=c(3,.3,0),beta=c(5,3,1),x=xtot,coords=coords,kappa=1.2,
cens=0.25,n=(n+n1),n1=n1,cov.model=type,cens.type="left")
data2=obj$datare
data2[,4:5]=xobs[,-1]
cc=obj$cc
y=obj$datare[,3]
cutoff=rep(obj$cutoff,length(y[cc==1]))
aux2=algnaive12(data=data2,cc=obj$cc,covar=TRUE,covar.col=4:5,
copred=obj$coords1,thetaini=c(.1,.2),y.col=3,coords.col=1:2,
fix.nugget=TRUE,nugget=0,kappa=1.2,cutoff=cutoff,trend=~V4+V5,
cov.model=type)
summary(aux2)