estimate_gps {CausalGPS} | R Documentation |
Estimate generalized propensity score (GPS) values
Description
Estimates GPS value for each observation using normal or kernel approaches.
Usage
estimate_gps(
.data,
.formula,
gps_density = "normal",
sl_lib = c("SL.xgboost"),
...
)
Arguments
.data |
A data frame of observed continuous exposure variable and
observed covariates variable. Also includes |
.formula |
A formula specifying the relationship between the exposure variable and the covariates. For example, w ~ I(cf1^2) + cf2. |
gps_density |
Model type which is used for estimating GPS value,
including |
sl_lib |
A vector of prediction algorithms to be used by the SuperLearner packageg. |
... |
Additional arguments passed to the model. |
Value
The function returns a S3 object. Including the following:
-
.data
:id
,exposure_var
,gps
,e_gps_pred
,e_gps_std_pred
,w_resid
-
params
: Including the following fields:gps_mx (min and max of gps)
w_mx (min and max of w).
.formula
gps_density
sl_lib
fcall (function call)
Examples
m_d <- generate_syn_data(sample_size = 100)
data_with_gps <- estimate_gps(.data = m_d,
.formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6,
gps_density = "normal",
sl_lib = c("SL.xgboost")
)