constructCVSTModel {CVST} | R Documentation |
Setup for a CVST Run.
Description
This is an helper object of type CVST.setup
conatining all
necessary parameters for a CVST run.
Usage
constructCVSTModel(steps = 10, beta = 0.1, alpha = 0.01,
similaritySignificance = 0.05, earlyStoppingSignificance = 0.05,
earlyStoppingWindow = 3, regressionSimilarityViaOutliers = FALSE)
Arguments
steps |
Number of steps CVST should run |
beta |
Significance level for H0. |
alpha |
Significance level for H1. |
similaritySignificance |
Significance level of the similarity test. |
earlyStoppingSignificance |
Significance level of the early stopping test. |
earlyStoppingWindow |
Size of the early stopping window. |
regressionSimilarityViaOutliers |
Should the less strict outlier-based similarity measure for regression tasks be used. |
Value
A CVST.setup
object suitable for fastCV
.
Author(s)
Tammo Krueger <tammokrueger@googlemail.com>
References
Tammo Krueger, Danny Panknin, and Mikio Braun. Fast cross-validation via sequential testing. Journal of Machine Learning Research 16 (2015) 1103-1155. URL https://jmlr.org/papers/volume16/krueger15a/krueger15a.pdf.
See Also
[Package CVST version 0.2-3 Index]