graph.naivePruning {CTD} | R Documentation |
Network pruning for disease-specific network determination
Description
Prune edges from a disease+control "differential" network that also occur in the control-only network.
Usage
graph.naivePruning(ig_dis, ig_ref)
Arguments
ig_dis |
- The igraph object associated with the disease+reference trained differential network. |
ig_ref |
- The igraph object associated with the reference-only trained interaction network. |
Value
ig_pruned - The pruned igraph object of the disease+reference differential network, with reference edges subtracted.
Examples
# Generate a 100 node "disease-control" network
adj_mat=matrix(0, nrow=100, ncol=100)
rows = sample(seq_len(100), 50, replace=TRUE)
cols = sample(seq_len(100), 50, replace=TRUE)
for (i in rows) {for (j in cols){adj_mat[i,j]=rnorm(1,0,1)}}
colnames(adj_mat)=sprintf("Metabolite%d", seq_len(100))
ig_dis = graph.adjacency(adj_mat, mode="undirected", weighted=TRUE)
# Generate a 100 node reference "control-only" network
adj_mat2=matrix(0, nrow=100, ncol=100)
rows2 = sample(seq_len(100), 50, replace=TRUE)
cols2 = sample(seq_len(100), 50, replace=TRUE)
for (i in rows2) {for (j in cols2){adj_mat2[i,j]=rnorm(1,0,1)}}
colnames(adj_mat2)=sprintf("Metabolite%d", seq_len(100))
ig_ref = graph.adjacency(adj_mat2, mode="undirected", weighted=TRUE)
ig_pruned=graph.naivePruning(ig_dis, ig_ref)
[Package CTD version 1.2 Index]