data.surrogateProfiles {CTD} | R Documentation |
Generate surrogate profiles
Description
Fill in a data matrix rank with surrogate profiles., when your data is low n, high p.
Usage
data.surrogateProfiles(data, std = 1, ref_data)
Arguments
data |
- Data matrix with observations (e.g., patient samples) as columns, features (e.g., metabolites or genes) as rows |
std |
- The level of variability (standard deviation) around each observed feature's z-score you want to add to generate the surrogate profiles |
ref_data |
- Data matrix for healthy control "reference" samples, observations (e.g., patient samples) as columns, features (e.g., metabolites or genes) as rows |
Value
data_mx_surr - Data matrix with added surrogate profiles
Examples
data("Miller2015")
data_mx=Miller2015[-1,grep("IEM_", colnames(Miller2015))]
data_mx=apply(data_mx, c(1,2), as.numeric)
diags=unlist(Miller2015["diagnosis",grep("IEM_", colnames(Miller2015))])
refs=data_mx[,which(diags=="No biochemical genetic diagnosis")]
ref_fill=as.numeric(Miller2015$`Times identifed in all 200 samples`[-1])/200
refs2=refs[which(ref_fill>0.8),]
diag_pts=names(diags[which(diags==unique(diags)[1])])
diag_data=data_mx[which(rownames(data_mx) %in% rownames(refs2)),
which(colnames(data_mx) %in% diag_pts)]
data_mx_surr=data.surrogateProfiles(data=diag_data, std=1, ref_data=refs2)
[Package CTD version 1.2 Index]