pmf {CLVTools} | R Documentation |
Probability Mass Function
Description
Calculate P(X(t)=x), the probability to make exactly x
repeat transactions in
the interval (0, t]. This interval is in the estimation period and excludes values of t=0
.
Note that here t
is defined as the observation period T.cal
which differs by customer.
Usage
## S4 method for signature 'clv.fitted.transactions'
pmf(object, x = 0:5)
Arguments
object |
The fitted transaction model. |
x |
Vector of positive integer numbers (>=0) indicating the number of repeat transactions x for which the PMF should be calculated. |
Value
Returns a data.table
with ids and depending on x
, multiple columns of PMF values, each column
for one value in x
.
Id |
customer identification |
pmf.x.Y |
PMF values for Y number of transactions |
See Also
The model fitting functions pnbd,
bgnbd, ggomnbd
.
plot
to visually compare
the PMF values against actuals.
Examples
data("cdnow")
# Fit the ParetoNBD model on the CDnow data
pnbd.cdnow <- pnbd(clvdata(cdnow, time.unit="w",
estimation.split=37,
date.format="ymd"))
# Calculate the PMF for 0 to 10 transactions
# in the estimation period
pmf(pnbd.cdnow, x=0:10)
# Compare vs. actuals (CBS in estimation period):
# x mean(pmf) actual percentage of x
# 0 0.616514 1432/2357= 0.6075519
# 1 0.168309 436/2357 = 0.1849809
# 2 0.080971 208/2357 = 0.0882478
# 3 0.046190 100/2357 = 0.0424268
# 4 0.028566 60/2357 = 0.0254561
# 5 0.018506 36/2357 = 0.0152737
# 6 0.012351 27/2357 = 0.0114552
# 7 0.008415 21/2357 = 0.0089096
# 8 0.005822 5/2357 = 0.0021213
# 9 0.004074 4/2357 = 0.0016971
# 10 0.002877 7/2357 = 0.0029699
[Package CLVTools version 0.10.0 Index]