| plotTseries.fn {CGManalyzer} | R Documentation | 
function to plot time series data
Description
function to plot time series data
Usage
plotTseries.fn(x, y, xAt = NA, xLab = NA, yRange = NA, Frame = TRUE, xlab = "",
ylab = "", pch = 1, lty = 1, col.point = 1, col.line = 1, cex.point = 1, lwd = 1)
Arguments
| x | time in continuous value such as in seconds or minutes, (e.g. the return from timeSeqConversion.fn) | 
| y | measured response value | 
| xAt | a vector to indicate where the labels in the x-axis are | 
| xLab | a vector to indicate what the labels in the x-axis are | 
| yRange | range for y in the plot | 
| Frame | whether the plot frame should be drawn | 
| xlab | as in plot() | 
| ylab | as in plot() | 
| pch | as in plot() | 
| lty | as in plot() | 
| col.point | the color for the points | 
| col.line | the color for the line | 
| cex.point | cex for the points | 
| lwd | as in plot() | 
Details
function to plot time series data
Author(s)
Xiaohua Douglas Zhang
References
Zhang XD, Zhang Z, Wang D. 2018. CGManalyzer: an R package for analyzing continuous glucose monitoring studies. Bioinformatics 34(9): 1609-1611 (DOI: 10.1093/bioinformatics/btx826).
Examples
library(CGManalyzer)
package.name <- "CGManalyzer"
source( system.file("SPEC", "SPECexample.R", package = package.name) )
data.df0 <- read.table(paste(dataFolder, dataFiles[1], sep="/"),
            skip=Skip, header=Header, comment.char=Comment.char, sep=Sep)
if( !Header ) {
	data.df0 <- data.df0[, 1:length(columnNames)]
    dimnames(data.df0)[[2]] <-  columnNames
}
if( !is.na(idxNA) ) data.df0[ data.df0[, responseName] == idxNA, responseName] <- NA
for( i in 1:length(timeStamp.column) ) {
	if(i==1) { timeStamp.vec <- data.df0[, timeStamp.column[i] ] } else {
		 timeStamp.vec <- paste0(timeStamp.vec, " ", data.df0[, timeStamp.column[i] ])
	}
}
Time.mat <- timeSeqConversion.fn(time.stamp=timeStamp.vec, time.format=time.format,
            timeUnit=timeUnit)
data.df <- data.frame( timeStamp.vec, Time.mat[,1], data.df0[,responseName] )
dimnames(data.df)[[2]] <- c("timeStamp", "timeSeries", responseName)
data.df <- data.df[ order(data.df[, "timeSeries"]), ]
plotTseries.fn(	x=data.df[, "timeSeries"], y=data.df[, responseName],
				xAt=0:14*720, xLab=0:14/2, yRange=NA, Frame=TRUE,
				xlab="Time in Days", ylab=responseName, pch=1, lty=1,
				col.point=1, col.line=1, cex.point=0.5, lwd=1 )
[Package CGManalyzer version 1.3.1 Index]