summary.cfo {CFO} | R Documentation |
Generate descriptive summary for objects returned by other functions
Description
Generate descriptive summary for objects returned by other functions.
Usage
## S3 method for class 'cfo'
summary(object, ...)
Arguments
object |
the object returned by other functions. |
... |
ignored arguments |
Value
summary()
prints the objects returned by other functions.
Note
In the example, we set nsimu = 5
for testing time considerations. In reality, nsimu
is typically set to 5000 to ensure the accuracy of the results.
Author(s)
Jialu Fang, Wenliang Wang, and Guosheng Yin
Examples
## settings for 1dCFO
nsimu <- 5; ncohort <- 12; cohortsize <- 3; init.level <- 1
p.true <- c(0.02, 0.05, 0.20, 0.28, 0.34, 0.40, 0.44); target <- 0.2
assess.window <- 3; accrual.rate <- 2; tte.para <- 0.5; accrual.dist <- 'unif'
## summarize the object returned by CFO.next()
decision <- CFO.next(target = 0.2, cys = c(0, 1, 0), cns = c(3, 6, 0), currdose = 3)
summary(decision)
## summarize the object returned by lateonset.next()
enter.times<- c(0, 0.266, 0.638, 1.54, 2.48, 3.14, 3.32, 4.01, 4.39, 5.38, 5.76,
6.54, 6.66, 6.93, 7.32, 7.65, 8.14, 8.74)
dlt.times<- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0.995, 0, 0, 0, 0, 0, 0, 0, 2.58)
current.t<- 9.41
doses<-c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4)
decision <- lateonset.next(design = 'f-aCFO', target, p.true, currdose = 4, assess.window,
enter.times, dlt.times, current.t, doses)
summary(decision)
## summarize the object returned by CFO.selectmtd()
selmtd <- CFO.selectmtd(target=0.2, npts=c(3,3,27,3,0,0,0), ntox=c(0,0,4,2,0,0,0))
summary(selmtd)
## summarize the object returned by CFO.simu()
aCFOtrial <- CFO.simu(design = 'aCFO', target, p.true, init.level, ncohort, cohortsize, seed = 1)
summary(aCFOtrial)
# This test may take longer than 5 seconds to run
# It is provided for illustration purposes only
# Users can run this code directly
## summarize the object returned by lateonset.simu()
faCFOtrial <- lateonset.simu (design = 'f-aCFO', target, p.true, init.level,
ncohort, cohortsize, assess.window, tte.para, accrual.rate, accrual.dist, seed = 1)
summary(faCFOtrial)
## summarize the object returned by CFO.oc()
faCFOoc <- CFO.oc (nsimu, design = 'f-aCFO', target, p.true, init.level, ncohort, cohortsize,
assess.window, tte.para, accrual.rate, accrual.dist, seeds = 1:nsimu)
summary(faCFOoc)
## settings for 2dCFO
p.true <- matrix(c(0.05, 0.10, 0.15, 0.30, 0.45,
0.10, 0.15, 0.30, 0.45, 0.55,
0.15, 0.30, 0.45, 0.50, 0.60),
nrow = 3, ncol = 5, byrow = TRUE)
cns <- matrix(c(3, 3, 0,
0, 6, 0,
0, 0, 0),
nrow = 3, ncol = 3, byrow = TRUE)
cys <- matrix(c(0, 1, 0,
0, 2, 0,
0, 0, 0),
nrow = 3, ncol = 3, byrow = TRUE)
currdose <- c(2,3); target <- 0.3; ncohort <- 12; cohortsize <- 3
## summarize the object returned by CFO2d.next()
decision <- CFO2d.next(target, cys, cns, currdose = currdose, seed = 1)
summary(decision)
## summarize the object returned by CFO2d.selectmtd()
ntox <- matrix(c(0, 0, 2, 0, 0, 0, 2, 7, 0, 0, 0, 2, 0, 0, 0), nrow = 3, ncol = 5, byrow = TRUE)
npts <- matrix(c(3, 0, 12, 0, 0, 3, 12, 24, 0, 0, 3, 3, 0, 0, 0), nrow = 3, ncol = 5, byrow = TRUE)
selmtd <- CFO2d.selectmtd(target=0.3, npts=npts, ntox=ntox)
summary(selmtd)
## summarize the object returned by CFO2d.simu()
CFO2dtrial <- CFO2d.simu(target, p.true, init.level = c(1,1), ncohort, cohortsize, seed = 1)
summary(CFO2dtrial)
## summarize the object returned by CFO2d.oc()
CFO2doc <- CFO2d.oc(nsimu = 5, target, p.true, init.level = c(1,1), ncohort, cohortsize,
seeds = 1:5)
summary(CFO2doc)
[Package CFO version 1.3.1 Index]